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load corresponding to nonlinear axisymmetric collapse. A description of various
pitfalls encountered in the search for the lowest bifurcation buckling load is
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buckling mode. Computerized formulations and run times are compared for various
discretization methods, including finite difference energy models and standard
finite element models, with an example showing comparisons of rate of convergence
with increasing nodal point density and computer times required to form stiffness
matrices.

Hybrid bodies of revolution are discussed next. By "hybrid" is meant a body
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The formulation is particularly useful for the stress, buckling, and vibration
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interested in local effects within a distance equal to a shell wall thickness of a
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with simultaneous geometric nonlinearity and pathdependent material properties is
described, including the development of the incremental constitutive law for the
tangent stiffness method of treatment of elastic-plastic structures. The two-
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quadrilaterals of revolution. Details are presented on the formulation of con-
straint conditions for compatibility at junctions between rotationally symmetric
shell segments (one-dimensionally discretized regions) and solid segments (two-
dimensionally discretized regions).

The report closes with a summary of linear e i
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face coordinates, the first and second fundamental forms, and the definition of a
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are listed, including differences with regard to kinematic relations, expressions
for total strain anywhere in the thickness of the shell wall, and expressions for

stress and moment resultants. Comments are offered on which theory is the most
suitable for engineering estimates.
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SUMMARY

The volume opens with a general discussion of terms in an energy functional
which might be the basis from which equations governing stress, stability,
and vibration analyses are derived. The energy ekpressicn includes strain
energy of the shell and discrete stiffeners, kinetic energy of the shell and
stiffeners, constraint conditions with Lagrange multipliers, and other terms
arising from the change in direction of applied loads during deformation.
‘Brief discussions are included of the coupling effect between bending and ex-
tensional energy needed for the analysis of layered composite shells or
elastic-plastic shells, nonlinear terms, and the form that the energy expres-

sion takes upon discretization of the structure.

A section follows in which the energy formulation for stress, stability, and
vibration analyses of an elastic curved beam is given, including thermal effects,
moderately large rotations, boundary conditions, and distributed and concen-
trated loads. The matrix notation and type of discretization are introduced
here which will later be used for the analysis of shells of revolution. Terms
in the local element stiffness, mass, and load-geometric matrices are derived
in terms of nodal point displacements, and it is shown how these local matrices
are assembled into global matrices. The purpose of the section is to demon-
strate the procedure for derivation of the analogous equations and quantities

for shells of revolution or more complex structures.

The next section is on elastic shells of revolution. It opens with a summary

of what computer programs exist for stress, buckling, and stability analyses




of such structures. The assumptions on which these programs are based are
listed and the various components of the energy functional, such as strain
energy of the shell and discrete rings, are identified and derived in terms

of nodal point displacements. Included are a derivation of the constitutive
law for anisotropic shell walls and a formulation of nonlinear constraint con-
. ditions, which are required for the treatment of segmented or branched shells
with meridional discontinuities between segments or branches. Derivations of
terms in the global stiffness and load-geometric matrices and the force vector
are given, with tables tracing the origin of each term. The computational
strategy for calculation of critical bifurcationbuckling loads in the presence
of prebuckling nonlinearities is given, with an example of buckling under axial
compression of a very thin cylinder. This is a simple problem to formulate
but a difficult one to solve numerically, owing to the existence of closely
spaced eigenvalues corresponding to nonsymmetric buckling at loads close to
the load corresponding to nonlinear axisymmetric collapse. A description of
various pitfalls encountered in the search for the lowest bifurcation buckling
load is given, including estimates of the critical number of circumferential
waves in the buckling mode., Computerized formulations and run times are com-
pared for various discretization methods, including finite difference energy
models and standard finite element models, with an example showing comparisons
of rate of convergence with increasing nodal point density and computer times

required to form stiffness matrices.

Hybrid bodies of revolution are discussed next. By '"hybrid" is meant a body
of revolution with both one-dimensionally and two-dimensionally discretized
regions. The formulation is particularly useful for the stress, buckling, and

vibration analyses of branched shells or ring-stiffened shells in which one is



particularly interested in local effects within a distance equal to a shell

wall thickness of a branch or ring. An appropriate strategy for the solution
of nonlinear problems with simultaneous geometric nonlinearity and path-
dependent material properties is described, including the development of the
incremental constitutive law for the tangent stiffness method of treatment

of elastic-plastic structures. The two-dimensionally discretized regions are
modeled with use of 8-node isoparametric quadrilaterals of revolution. De-
talls are presented on the formulation of constraint conditions for compati-
bility at junctions between rotationally symmetric shell segments (one-
dimensionally discretized regions) and solid segments (two—dimensionally

discretized regions).

The report closes with a summary of linear equations for general shells. Sur-
face éoordinates, the first and second fundamental forms, and the definition
of a shell are introduced, and the assumptions corresponding to Love's first
approximation are identified. The differences in commonly used or referenced
formulations are listed, including differences with regard to kinematic rela-
tions, expressions for total strain anywhere in the thickness of the shell
wall, and expressions for stress and moment resultants. Comments are offered

on which theory is the most suitable for engineering estimates.
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Section 1

GOVERNING EQUATIONS ~ AN INTRODUCTORY SUMMARY

The majority of computerized analyses of thin shells are based on an energy
formulation, important exceptions being the programs for shells of revolu-
tion by Cohen [ 1], Kalnins [ 2], and Svalbonas [ 3] based on forward
integration. Energy expressions can be used to demonstrate the kinds of
terms that should be included in a reasonably comprehensive computer pro-
gram intended to be widely used for the analysis of stress, buckling, and

vibration of practical engineering shell structures.
Strain Energy

If the displacement method is used, the strain energy of the shell is
expressed in terms of the strains and changes in curvature of the refer-
ence surface, which is not necessarily the middle surface or the neutral

surface

= %-f (eTCe + 2Ne) dS A1)

U
shell S

where dS 1is the elemental area of the reference surface. The six ele-
ment vector e represents the reference surface strains €15 €55 €995

and changes in curvature Kis Koy Kyo3 and C is a 6 x 6 symmetric matrix
of coefficients which depends on the location of the wall material relative

to the reference surface, on the details of the wall construction, on the




temperature, and, 1f plasticity is present and the tangent stiffness method
is used [ 4], on the stress-strain curve and flow law of the material. The
quantity N 1is a vector containing thermal expansion effects, creep strains,
and plastic strains. If plasticity is present or if the material properties
debend on the temperature, the elements of € and N at a point on the
reference surface must in general be determined by numerical integration
through the thickness, Stricklin et al. [ 5] and Bushnell [ 4] point out
that Simpson's rule should be used for the integration. Jones [ 6], Ashton

et al, [ 7], and Ashton and Whitney L 81 derive C for laminated wall con-

struction,

Coupling between Bending and Extensional Behavior

If the middle surface is the reference surface, and if the properties of
the wall are symmetric with respect to this surface, then all those elements
of C are zero through which stress resultants Nl’ Ny, le cause changes
in curvature Kps Ko Kygs and through which moment resultants Ml’ My, MlZ
cause normal strains of the reference surface. Generally, however, there
exists coupling of bending and extensional behavior which cannot be elimi-
nated by a shifting of the reference surface. Three common examples

are shells reinforced in one direction by stiffeners that are eccentrically
located with respect to the shell's neutral surface, shells stressed into
the plastic region by a combination of stretching and bending, and nonuni-
formly heated shells constructed of temperature-dependent material. In the
first example the neutral surface with regard to bending and stretching in
one direction is in a different plane from the neutral surface with re-
gard to bending and stretching in an orthogonal direction. In the second
and third examples the location of the neutral surface changes with

strain and temperature distribution. In all three of the examples it is



not possible to choose a priori a reference surface location in order to
eliminate coupling between extensional and bending terms in the energy
expression. In addition, it is often advantageous not to have to choose

the middle surface as a reference surface, since practical monocoque shell
structures often have variable wall thicknesses and doublers which make the
middle surface difficult to describe mathematically and which cause its
position to change abruptly in space. Coupling between bending and stretch-
ing energy is also present in shells with composite walls such as layered

orthotropic, fiber-wound, or semisandwich corrugated construction.

One of the first requirements of a computer program for shell analysis,.
therefore, is to permit arbitrary location of the reference surface with
respect to the wall material and to include in the mathematical model the
energy éoupling between changes in curvature and normal strains of this
surface., If the engineer is interested in performing analyses of many
different kinds of shell structures, he is advised to obtain a computer
program or programs which include coupled membrane and bending behavior,
The traditional finite element model of a shell in which membrane and
bending behavior are introduced through separate elements is not gener-

ally adequate.
Kinematic Relations and Nonlinear Terms

In Eq. (1) the strain vector e can be expressed in terms of displace-
ment and rotation components and derivatives of these quantities. Kine-
matic relations have been given by many authors, The nonlinear strain-

displacement equations of Love [ 9], Novoshilov [10], or Sanders [ 11]




are acceptable as a basis for the displacement method. In general, non-
linearities need not be retained in the change-in-~curvature-displacement
relations as long as the largest reference surface rotations are less than
about 20 degrees, which is usually the case. The normal strains eys €y
and in-plane shear strain e can always be written so that the highest

12

order nonlinearities are quadratic.

There is a good physical explanation for the need to retain nonlinear
terms in the strain-displacement but not in the curvature-displacement
relations. If a thin shell deflects a large amount, let us say an ampli-
tude many times the thickness, the strains are usually small even though
the deflections are rather large. Hence, the linear terms in the strain-
displacement relations will tend to cancel each other, and the nonlinear
terms will become significant for much smaller displacements than they
would have if the linear terms had not tended to cancel. The linear
terms inthe expressions for the change in curvature, however, to not tend
to cancel, and the wall rotations must be large indeed before nonlinear

terms have to be included in these expressions.

Discretization - A Brief Summary

Finite element method. By far the majority of computer programs for shell

analysis are based on the finite element method. Gallagher [ 12, 13,
14] gives surveys of the use of finite elements for linear and nonlinear

analysis of general shells. Brombolich and Gould [ 15] present such a

survey for shells of revolution. A detailed description of the various

elements with evaluation will therefore not be presented here. Gallagher




encapsulates the state-of-the-art as of 1972: '"Three alternative forms of
finite element representation of thin curved shells are popular: (1) in
'faceted' form via the use of flat elements, (2) by means of isoparametric
solid elements which have been specialized to represent curved thin shells,
and (3) via the theories formulated directly for shallow or deep curved

shells" [ 13].

Until about 1970 finite element experts using the displacement methéd'were
insistent that the displacements of adjacent elements be fully compatible
at the common boundary. Maintenance of slope and displacement compatibility
does have the advantage of guaranteeing that convergence of displacements
is monotonic from below and that eigenvalues for bifurcation buckling‘and
modal vibrations converge monotonically from above (assuming that in the
case of vibrations a consistent mass matrix is used). However, the en-
forcement of full interelement compatibility results in an overestimation
of the stiffness of the structure, which tends to decrease the rate of con-
vergence as the nodal point density is increased. Wilson [ 16] introduces
incompatible displacement functions in order to improve the convergence

properties,

A major drawback of incompatible elements used in bifurcation buckling
analysis is the tendency of the discretized model to yield spuriously low
buckling eigenvalues, For example, an engineer may wish to set up a dis-
cretized model in which the nodal points are locally concentrated in order
that local buckling near some stress concentration be accurately predicted,
However, because of the unfortunate property of convergence from below,

this model may yield a physically unreasonable prediction of buckling in

[@2]




some areas where the compressive stresses are lower but the nodal point dens-

ity is sparse. This spurious mode and others would likely prevent calculation
of the local mode for which the locally dense mesh was originally established.
The problem of spurious buckling modes becomes especially severe in cases

for which an intuitive grasp of the expected behavior is weak.

Finite difference energy method. A few shell analyses have been performed

and computer programs written based on the finite difference energy method,
in which the displacement derivatives appearing in e (Eq. 1) are replaced
by finite difference expressions. Johnson [ 17] was the first to perform
such an analysis with use of an arbitrary quadrilateral finite difference
mesh., A widely used computer program based on this approach is BOSOR4,

which treats stress, buckling, and vibration of axisymmetric shells [ 18].

A good test case. Bushnell [ 19] presents a comparison of the finite

element method and the finite difference energy method, showing that in
certain cases the finite difference energy method is actually a rapidly
convergent kind of finite element method in which the element displacements
and rotations are incompatible at interelement boundaries, Figures 1 and
2, taken from [ 19], show the results of a convergence study invol§ing
a free hemisphere pinched by a cos 26 pressure distribution. This rather
ill-conditioned problem is a very good test of various methods of discreti-
zatlon. The problem is ill-conditioned because small forces cause large
displacements, Thus, the predicted reference surface strains are very
small differences of relatively large numbers, The dotted line in Figure
2 is obtained with use of a half-station finite difference energy method,

which is equivalent to a finite element method based on linear functions



for u and v and a quadratic function for w. Detailed descriptions of
the finite elements are given in [ 19] and [ 20]. Users and developers
of computer programs for shell analysis and for general structures are
urged to employ this case in order to determine the adequacy of the shell

elements in the finite element libraries of their programs.

Discretized kinematic relations., With use of a discretization method,

analytical kinematic relations e = L(d), where L is a nonlinear differ-
ential operator and d 1s the displacement vector, can be expressed in the

algebraic form

The vector ey represents reference surface strains and changes in curva-
ture at some point i;. di is the local nodal point displacement vector
associated with 1i; and BL and BNL are 6 x m matrices dépendent on
the local reference surface geometry and mesh spacing at 1i. The number
of columns m of BL and BNL depends on how many nodal degrées of free-
dom are used in the discrete model. If Eq. ( 1) is expressed in discrete
form, and if the right-hand side of Eq. ( 2) is substituted into it, the

strain energy expresssion for the thin shell becomes a quartic algebraic

form in the di if € and N are independent of di'
Stiffener Strain Energy
Many practical shell structures are reinforced by stiffeners. Depending

on the configuration these might be '"smeared out" or treated as discrete

elastic structures.




"Smeared" stiffeners. If there exists a regular pattern of reasonably closely

spaced stiffeners, their contribution to the wall stiffness of the shell or
plate might be modeled by an averaging of their extensional and bending rigid-
ities over arc lengths equal to the local spacings between them, Thus, the
actual wall is treated as if it were orthotropic. This "smearing" process
accounts for the fact that the neutral axes of the stiffeners do not in general
lie in the plane of the reference surface of the shell wall, Predictions of
buckling loads and vibratilon frequencies of stiffened cylinders have been

found to be very sensitive to this eccentricity effect. A general rule of
thumb for deciding whether to smear out the stiffeners or to treat them as
discrete is that for smearing there should be about 2 to 3 stiffeners per half-
wavelength of the deformation pattern. It may be appropriate to smear out
stiffeners in a buckling or vibration analysis but, because of local stress
concentrations caused by the stiffeners, not in a stress analysis. The stiff-
eners can be smeared as an analytical device to suppress local buckling and
vibration modes., In order to handle problems involving smeared stiffeners,

a computerized analysis must include coupling between bending and extensional
energy as described earlier. The paper by Baruch and Singer [ 21] is a clas-

sic in the field of stiffened shell analysis,

Discrete stiffeners. If the stiffeners are so far apart that significant var-

iations of displacement and stress occur between them, then they cannot be
averaged over the entire shell surface but must be treated as discrete one- .
dimensional bodies. The standard approach is to assume that the cross section
of the stiffener does not deform but that it translates and rotates in a fash-
ion compatible with the shell to which it is attached. 1If plane sections of

the stiffener remain planar and normal to the reference axis, the strain



energy can be written in a form analogous to that for the shell:

1 T—
Ustiffener B 2 IL[erGer + 2Nrer] dL ¢ 3

where dL is the incremental length along the reference axis of the stiff-

"ener. The four-element vector e, represents the reference axis normal

strain e 1s changes in curvature « K in two.orthogonal planes, and

rl? r2

twist « G is in general a full 4 x 4 symmetric matrix of coefficients

rl2*
which depends on the location of the stiffener material relative to the ref-
erence axis, on details of the stiffener construction, on the temperature,
and if plasticity is present and the tangent stiffness method is used, on the
stress-strain curve and the flow law of the stiffener material. The vector
Nr is analogous to N in Eq. ( 1). If plasticity is present or if the

material properties of the stiffener are temperature dependent, the elements

of G and Nr at a point on the reference axis must in general be determined

by numerical integration over the stiffener area. The reference axis strain

e 1> changes in curvature Keps Kpoo and twist Koo can be expressed in

terms of the displacement and rotation components and derivatives of these

quantities referred to the stiffener reference axis. With appropriate dis-

-cretization, the stiffener strain vector e. can be expressed in algebraic

form as

= B d, + d

eri Lr ri driBNerri ¢4

in which all quantities are analogous to those in Eq. ( 2). Since the ref-
erence axis of the stiffener does not in general lie in the plane of the
reference surface of the shell, the local displacement vector dri must be

expressed in terms of the local shell reference surface displacement di




dri = Edi

so that Eq. ( 4) in terms of the dependent variables di becomes

e = B _Ed, + diTETB 6)

ri Lr i LrEd

NLrO4 (

- 1f Eq. ( 3) is expressed in discrete form and if the right-hand side of
Eq. ( 6) is substituted into it, the strain energy expression for the

stiffener becomes a quartic algebraic form which is added to the shell

strain energy.

Loading

Two aspects of loading are of particular interest when thin shells are
involved: (1) '"live" load or following loads vs. "dead" or constant-
directional loads; and (2) lbading by means of enforced displacement

vs. loading by prescribed external forces,

Live loads. A "live"or following load is a lead the direction of which changes
as the shell surface rotates. The expressions for work done by the exter~-

nal forces distributed over the shell surface and along the discrete stiff-

eners are, respectively

T .

Woie1l = fs(pd + d Pd) ds (D

W = [ lqd_+ dlqda | a1 ( 8)
stiffener &, ac, rer - '
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The second terms in each integrand represent the live load effect, This
effect should be included if the deflections or rotations are moderately
large or, in modal vibration of bifurcation buckling problems, if the half-
wavelength of the mode is the same order of magnitude as the smallest prin-
cipal radius of curvature, Two examples in which the live load effect is
significant are the bifurcation buckling or nonlinear collapse of a very
long cylinder under external pressure and that of a ring under external
radial compression. Inclusion of the live load effect lowers the predicted

failure loads by about 30 percent in these cases.

Displacement vs. force loading. Loading may be applied by means of a con-

trolled displacement distribution (such as uniform end shortening of a
cylinder) or by means of a controlled force distribution (such as uniformly
applied axial force). A given thin shell structure may behave very differ-
ently under these two loading conditions. If a boundary displacement is
imposed, a significant amount of stress redistribution can occur. Flexible
or "soft" parts of the structure deform considerably with more load subse-
quently being taken up by the stiff or "hard" parts. Figures 3 and 4
show shells for which this type of behavior occurs. At an axial load of
about 200 1bs. the flat portions of the pear-shaped cylinder shown in Fig-
ure 3 begin to bend. The load initially carried by these portions is
transferred to the curved parts, which absorb an increasing percentage of
the total load until these also buckle, resulting in a decreased load-
carrying capacity. A similar phenomenon occurs in the case of the axially
compressed cylinder with an elliptical cross section shown in Figure 4,
The perfect cylinder (g = 0) buckles at point A in a mode Aw shown in

insert (a). However, significant post-buckling load-carrying capacity is

1




exhibited at B and finally at C because the load initially carried by the
flatter portions of the cross section (S = 2.2) has been transferred to
the more highly curved portions (S = 0). Less stress redistribution can
take place 1f the boundary forces are imposed, leading in general to earlier

failure than for cases in which boundary displacements are imposed.

Kinetic Energy

In thin shell analysis it is not necessary to include rotatory inertia of the
shell wall. There is a stronger case for including rotatory inertia of the
discrete stiffeners, however. The kinetic energy of the shell and the

stiffeners has the analytical form

in which (°) indicates differentiation with respect to time, m is the
mass/area of the shell reference surface, m is the mass/length of dis-
crete stiffener reference axis, W, is the rotation vector of the stiffener
reference axis, and Ir is amatrix of rotatory inertia components of the °
stiffener referred to its reference axis. As before, various transforma-
tions are used in order to express all quantities in terms of the shell
wall displacements., Whether or not the mass matrix is diagonal depends,

of course, on the discretization model and the choice of nodal degrees of

freedom,

12




Boundary and Other Constraint Conditions

The energy minimization problem (displacement method) is subject to con-
straint conditions corresponding to behavior at the boundaries of the shell
or other locations within the domain where certain relationships between
nodal point displacements are postulated to ﬁold. These conditions may

be linear or nonlinear, Two types of nonlinearity may exist: the first
may result from continually changing geometry as loads are varied; the
second may result from a sudden change in behavior as one part of a struc-
ture contacts another, Other types of constraint conditions are listed in

the Questionnaire for Program Developers in the introduction.

The constraint conditions might be introduced into the analytical model -
by means of Lagrange multipliers or by appropriate elimination of rows

and columns of stiffness matrices. If the Lagrange multiplier method is
used, for example, a general nonhomogeneous, nonlinear constraint condition

might assume the form

- T
U, = AEla - Ty dy - 4T d, - d;l ( 10)

in which U, denotes an energy-like term pertaining to constraint condi-
tions; A 1is a vector of Lagrange multipliers; da and db are displace-
ment vectors at different points, a and b, din the structure; and d0

is an applied displacement,

A total energy expression H can be constructed from the right—hénd sides

of Eqs. (. 1) through (' 10). For a branched, segménted stiffened shell of

13




revolution, for example, the expression H might include:

o strain energy of shell segments, including smeared stiffeners ( 1)
° strain energy of discrete rings ( 3)

™ potential energy of applied loads ( .7), ( 8)

o kinetic energy of shell segments ( 9)

° kinetic energy of discrete rings (. 10)

° constraint conditions for boundaries (. 10)

® constraint conditions for junctions between shell segments ( 10)

With appropriate substitutions of discretized displacement components ¢
for continuous variables and numerical integration over shell reference
surface and over the lengths of discrete stiffeners, a nonhomogeneous

quartic functional

t

H = [ f(q,q;t) at ( 11)
1

can be obtained in which the coefficients as well as the displacements may
be time dependent. (Note that damping as well as fluid or soil structure
interaction effects have been omitted in the above development,) Numeri-
cal solutions for problems involving linear and nonlinear static stress,
bifurcation (eigenvalue) buckling, modal vibration with prestress, and linear
and nonlinear dynamic response can be based on this functional. Through
minimization with respect to the nodal point variables q, a set of sim-
ultaneous algebraic equations 1s generated. The nature of these equations

and the best numerical methods for their solution depend on the type of prob-

lem that is being solved.
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Section 2

ANALYSTS OF A CURVED BEAM

The foregoing discussion will be illustrated by a one-dimensional example--

.a curved beam shown in Figure 5.

The total energy expression H 1is given by

H = U - W+ U -1 | ( 12)
in which
US =  gtrain energy
W = work done by external loads
Uc =  constraint conditions
(Lagrange multiplier formulation)
T = kinetic energy

Strain Energy

The strain energy in the beam is given by

c
[
N

f o e_ dv ( 13)
s
vol

in which ¢ is the stress and €g is the strain that produces o:

15




€ = € - alT ( 14

The quantity e d1is the total strain and T is the temperature rise above

the zero-stress state,

It is assumed that plane sections remain plane, normal sections remain nor-
mal, and the beam deforms only in the plane of the paper. Displacements

and coordinates are shown in Figure .6,

The total strain e(s,z) can be expressed in terms of the strain and change

in curvature of the reference surface:

e(s,z) = e(s) - zx(s) ( 15)

and the reference surface quantities e and k can be expressed in terms of

the displacements:

e = du/dx + w/R + -% 82
( .16)
k = dB/ds
where
B = dw/ds - u/R ( 17)

R(s) 1s the local radius of curvature of the reference surface of the beam,

and B 1is the rotation as shown in Figure 7.

16



The stress o¢ i1is given by

6 = E(e - aT) ( 18)

where E dis the modulus of elasticity and o 1is the coefficient of thermal

expansion,

Using.Eqs. ( 14), ( 15), and ( 18), and assuming thét the beam ié of uhit

depth normal to the plane of the paper, one can write Eq. ( 13) in the form

1 E -Ez e e 2 9 ‘ '
U, = —?:js jz le,«l 9 - 2EaT|1, -z + Ea“T"| dzds ( 19)

-Ez Ez K K
in which | | denotes a row vector, [ ] a matrix, and {1 acolum

vector,

The quantity |e,k| denotes a row vector with two elements, e and «.
Equation ( 19) is derived in Figure 8.
Integration with respect to 2z, and neglect of the term Ea2T2, which

does not contain any dependent variables, leads to

C C e e :

o, = 5[ |lese] | P H4 28T ds ¢ 20)

s C12 022 K K

in which
_ _ 2
C;; E szdz; C,, = ~[ Ezdz; c,, = | E2%dz
2 z ( .21)
T T _
N° = -f Eordz; M° = [ Eolzdz
Z Z

17




The strain energy can be expressed in terms of the displacements and their

derivatives with use of Eqs. (. 16) and ( 17)
External Loading

Suppose that the beam is submitted to loading as shown in Figure 9(a).
The reference surface is considered to be loaded by constant-directional
distributed pressure P, and traction Pe» and constant-directional end
loads, V, H and M.
The work done by the applied loads shown in Figure 9(a) is

w-j(+)ds+u*+v*-+M ( 22

s Pt ¥ PV UL YL BL )

provided the loads act in a constant direction as the beam deforms,

In matrix notation, Eq. ( 22) becomes

() ()
u uL
W= [ lpp 0l fwpds + [H,V,m] {ur} ¢ 23)
S
B By,
) L)

Constraint Conditions

Suppose the beam is supported as shown in Figure . 10, The terms in UC

[Eq. ( 12)] are

% *
U = AOlu 0 + Aozw 0 + AO3B(0)

( 24)

*
+ AL10 + ALZW (L) + ALBO

18



or in matrix notation

(%) 3
u 0
o= sl Wt oo *
e = [ortozctos] Tt Prrtotia] 1V (25
B 0
L JO JL
Equation ( 25) can be written in a more general form
[ %) %)
u u
3x3 * 3x3 *
U, = LAO_! K, {w p + I_ALJ [Kg1 v } ( 26)
B B
. JO JL
where, in the case of Eq. ( 25)
3x3 1 3x3 0
[KA] = 1 H [KB] = 1 ¢ 27)
1 0
Kinetic Energy
The kinetic energy of the beam is
T = %j a@? + w2 + Iméz:l ds ( 28)
s

in which (') denotes differentiation with respect to time, m is the mass/
length of reference surface arc, and Im is the mass moment of inertia of

the beam cross section.

If one is concerned with modal Vibrations

(u,w) = 10+ (u,w) | ¢ 29

19




in which Q 1s the modal angular frequency.

In matrix form Eq. ( 28) becomes

u
92 3x3
T = -2 [ lu,w,8] ] {uf ds (. 30)
s
B
L)
where
m 0 O
M] = 0O0m O (. 31)
0 0 I
m
Discretization

Now assume that the beam is modeled as a series of discrete elements, with
nodal point displacements distributed as shown in Figure 11, The contin-

uous dependent variables (u,w) must be expressed in terms of nodal point

quantities.

In the special case with the degrees of freedom distributed as shown in
Figure 11 the finite elements are most appropriately chosen to extend
between adjacent u-points. The energy in the beam is then given approxi-~
mately by the sum over the number of elements, of the energy density at the

midlength of each element times the arc length hi of that element.

If the nodal point spacing is constant, the energy in the ith finite ele~

ment in Figure 11, for example, is evaluated at v . At this point the

20



quantities appearing in Eqs. ( 16) and ( 17) can be written in terms of

nodal point displacements as follows:

w o= (u tu) /2

v o= o ( 32)

By = Gy m W) SR - ey Ry (R

e = (G -u ) /by + /R o+ FE

€= Qg - gt ) by ¢ 33
- [y + w9y .‘/ 2] AR - (g -wg )/ (hii{i)

in which ( )' denotes differentiation with respect to reference surface arc

length, s.

In matrix form Eqs. ( 32) can be written as

3x5 .
w =  [D] {q} ( 34)
B
with
25 0 /2 0 1/2 0
D] = 0 0 1 0 0 ( 35)
-ll(Zhi) —1/(2Ri) 0 -1/(2Ri) 1/<2hi)
and
v Lq__l = {q }T = I__wi_l ’ui—l ’Wi ,ui ’Wi"‘l—l' . ( 36)
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The reference surface strain and change in curvature are given in matrix

form by
1.2
e 2x5 J*B
= [B] {q} + 4{°1
K 0
; ¢ 37
‘1[__1 5x5
5 Lal B {q}
= [B] {q} + {° NL
L 0
with
[ - T
‘ 1 0 l/hi 1/Ri l/hi 0
[B] = ' ( 38)
2 111 1 2 1/ 1 1 2
/by ‘i{i] * AR ~2/hy "?L—j “ %k, b
il i ii
L .
and
5x5 ?il %ﬁS
Byl = & (K] ( 39
in which the vector LF;[ is given by the third row of [D]:
Rl = [-1/(n), -1/(2R), 0, -1/(2R)), +1/(2h,) ] ( 40)

In the derivation of the total energy functional H of the ith finite ele-
ment, matrix formulas for LE*’W*’@J’ which appears in Eqs. ( 23) and ( 26)
are also needed. If the angle between the tangent to the reference surface
and the horizontal is ¢, as shown in Figure 9, then the vector Lg*,w*,gj

is related to the vector of nodal point degrees of freedom by

o 3x3 3x5
Wt o= [T D] {q} ¢ .41)
8



in which

cosé -ging 0

[T] sing cos¢ O , ( 42)

Total Energy of an Element

With use of Egqs. ( 20) and (. 37) for US; Eqs. ( 23), ( 34), and ( 41)
for W; Egs. ( 26) and ( 41) for Uc, and Eqs. (. 30) and ( 34) for T,
one can form the expression for the total "energy" Hi of the ith finite

element
H = u, - W, + U - T ( 43)

in terms of the nodal point degrees of freedom. The strain eﬁergy of the

ith finite element is:

1 1,2
h 1x5 5x2 2x2 {2x5 5x1 5B
i T 1.2 271
Uy = 3 ll_qJ (3] +l22'81’°_l [e) [18] gay + 17 |
/
( ( 44)
T T 2x5 5x1 -%Bi
+2 |N,M | [[B] {q} + 1
0
\
The work done by external loads is:
- S
W= lpepg,0l D) ek my # &,v,| [T] [D] {q} & ( 45)
The coﬁstraint condition "energy" is:
— i — i .
Uy = |Ro|Kal[TIDIMa} &5 + |3 |[KgIITIIDI{a} & (' 46)
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and the kinetic energy is:
2 T |
T, = -@7/2) || D] M] [D] by {q} ( 47)

Note that in Eqs. ( 44), ( .45), and ( 47) the reference axis arc length
increment ds:.L has been replaced by the nodal point spacing hi' The

Kronecker deltas appearing in Egs. ( 45) and ( 46) are defined by

i w-— . i _— -
6, = 0 if 4 f 4 6, = 1 4f i = 1
( 48)
i = . i = =
6 = 0 if i 4 g 5 A i,

in which iL means "i at s = L"; io means "i at s = 0". At the ends

of the beam the energy density is multiplied by one-half the spacing between

adjacent u-nodes,

Local and Global Stiffness and Mass Matrices

If the nonlinear term -%82 in Eq. ( .33a) is neglected, the strain energy Uk

of the kth finite element is simplified:

U, = -%l:l__q__[hk[B]T[C][B]{q} + thmT,M’H[Bi{q}]
N et

(' 49)

5x5

[K]

k

The 5x5 matrix [K]k==hk[B]T[C][B] is called the local element stiffness mat-
rix of the unloaded, undeformed finite element. The (i,j)th member of this
matrix Kk is generated by differentiating Uk with respect to 94 and qj,

i3

or calculating the second variation of Uk:
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2
3 Uk Kk

'SEISE; = Kij ( 50)
The_gﬂoﬁal stiffness matrix [K] for the entire beam is calculated by assem-
bling or accumulating local element stiffness matrices into a "master" or
global array, as shown in Figure 12, The positions of the filled members

of the global stiffness matrix depend on the numbering scheme used for the
nodal point degrees of freedom. For the simple example of the beam, the nodal
point degrees of freedom are logically numbered in increasing order from left
to right, resulting in compact storage of each 5x5 local stiffness matrix
within the NxN global array, where N is the number of degrees of freedom of
the entire discretized model. As seen from Figure 12, this numbering scheme
results in a global stiffness matrix which is narrowly banded about the main
diagonal. Solving such one-dimensional equilibrium, vibration, or stability
problems on the computer requires much less computer time and storage than

do problems of higher dimensionality.

Figure 13 shows the lower triangular part of a stiffness matrix for a more
‘complex "branched" one-dimensionally discretized structure. Included in the
matrix are terms of the type K&j’ indicated by x's, boundary condition
terms of the type |

[@1 = [K,] [T] [D] ( .51)

from Eq. ( .46), and juncture condition terms, not yet described, correspond-
ing to stations at which Segment (:) is fastened to Segment (:). Although
the bandwidth of this stiffness matrix is locally large at structural branch

points, the average bandwidth becomes relatively smaller as the nodal point
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density in the two structural segments is increased, resulting in inexpensive

computer runs,

The local mass matrices
k T
M]® = h[p]" [M] [D] ( 52)

are assembled into a global mass matrix, and the local force vectors [Eq.

45)1]
k di ibuted
(Fg}" = by [ppp, 0] (0] [miiad?te} ¢ 53)
Kk _ K boundary or
{Fb} = |u,v,M| [T] [D] 8, concentrated ( 54)

loads

are assembled into a global force or "right-hand-side" vector in a manner

completely analogous to that just described in connection with the stiffness

matrix,

If the discretization scheme shown in Figure 11 and specified by Eq. ( 32)
is used for derivation of the mass matrix, this matrix will have the same form
as the stiffness matrix, part of which is shown in Figure 12. 1In order to
obtain a diagonal mass matrix, one must assign a lumped mass to each dis-
-placement degree of freedom, For example, in the interior of the beam shown
in Figure 11, half the mass of element 1 might be assigned to nodal deg-
ree of'freedom U _qs half to uy and the full mass to v . The boundary
and segment junction conditions represented by the matrices [Q] and [D]

in the global stiffness matrix shown in Figure 13 would be filled with

zeroes in the corresponding global mass matrix.
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Equilibrium, Buckling, and Vibration

According to the principle of stationary energy, or minimum potential energy,

a structure is in equilibrium if

H
"—ai: = 0 i = 1,2, ... N ( 55)
i
where X, Trepresents a nodal degree of freedom or a Lagrange multiplier, and
N 1is the total number of degrees of freedom in the system including the
Lagrange multipliers. The terms in the global matrices governing equilibrium,

buckling, or modal vibration can be derived by application of this principle

to each finite element of the structural system.
Equilibrium

Because of the appearance of Bi in Eq. ( 44), Eq. ( 55) represents a sys-
tem of simultaneous nonlinear algebraic equations. These nonlinear algebraic
equations are solved with use of the Newton-Raphson method. The first varia-
tion aH/axi is expanded in a Taylor series about a known solution, {xo},

with retention up to linear terms in {Ax} only:

N BZH(XO)
BH/Bxi = BH(XO + Ax)/axi = BH(XO)/Bxi + .E 3% 9% ij = 0 ‘
j=1 i3
( 56)
i = 1,2 ... N

Equation ( 56) 1is solved for ij, j=1,2, ...N; a new trial solution

{xo + Ax} is then available; and the solution of Eq. ( 56) with {xd}
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replaced by {xo + Mx} 1s carried out for a new {Ax}. Iterations continue
until |{Ax/x}| is smaller than some prespecified number. [In the discussion

of the Newton-Raphson method the kinetic energy is assumed to be omitted from

Eq. ( 12).]
Bifurcation Buckling

Figure 14 shows a load-deflection curve with a bifurcation point at (Pcr’

IIXOH ), in which ||xo” is a generalized displacement conjugate to the

load Pye

Since the bifurcation point is on the equilibrium path O0-A, it is known
that

aH(xo)

axi

= 0 i = 1,2, ... N ¢ 57

In order to determine if {xo} is a bifurcation point, one must check to

see 1f

b
BH(xo+x )
b

Bxi

= 0 i = 1,2, ... N ( 58)

where {xb} is a non-trivial infinitesimal buckling mode. Expansion of H

in a Taylor Series about {xo}, as before, yields

BH(x ) N 82H(xo) b

—_— + I — x, + h.oo,t. = 0 i = 1,2, ... N ( 59)
b - b 3

dx i=1 ox ox,
i i ]
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Since {xo} is an equilibrium state, the first term of Eq. ( 59) is zero,

so that the bifurcation buckling equations become

N 32H(xo) b
55 *i = 0 i = 1,2, ... N ( 60)
j=1 axb X J
i3

These equations are linear and homogeneous in x?, j=1,2, ... N, A non-
trivial solution {xb} exists only for certain discrete values, the eigen-.
values, of the matrix

2 b ..b ,
) H(xo)/axi axj, i,j = 1,2, e N ( 61)

General Equations

In order to solve equilibrium and buckling (or vibratiop) problems, one must
obtain the vector aH(xo)/axi, i=1,2, ... N and the matrix BZH(XO)/Bxi ij,
i,j = 1,2, .. N. To derive these quantitles one starts from Eqs. ( 44) - |
( 47), assuming that the displacement state {q} is given by {qo + qb},

B = Bo + sb, where_ {qb} and Bb are considered to be small compared to

{qo} and Bo’ and the superscript b may signify either a correction to

the trial solution in the Newton-Raphson iterations or a buckling or vibration

modal quantity. One inserts
- b
{a} = Hq,+ 'k B = B, tB ¢ 62)

into Eqs. ( 44) - ( 47), then differentiateswithrespect to X, which

repreéents one of the components of the vector {q}. Note that the rotation
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B 4is given by
g = |R]{q} | ¢ 63)

in which L?;l is given by Eq. ( 40).

Dealing with just the first line of Eq. (2.44), assuming that {q} = {qo + qb},
and making use of Eq. ( 63) for B, one finds that this first line of Eq.

(  44) contributes the following terms to the first variation of H for the

kth finite element:

b
oH(q +q ) h 2
o Tk bl T o | 11,2 b, 1b
—s = 3 |f°+q_l[B] + | |28 + 8,8 + 58 ﬂ [cl
aqi
= b=
BoRi t 8 Ri
X {Bi} +
0
( 64)
= b
o+ Lo e ol)ee
r 1.2 b2
i)
x |[Bl{q +qa }+
{ 0

If one now allows {qb} + 0, 1dentifies q? as one of the global displace-
ment degrees of freedom Xy and includes terms from Eqs. ( 45) and ( 46)

in the first variation of H, one obtains
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B R

2H(q ) BH(x ) ot
o . . [qu_l 1" + |382,0 ][C] {B,} +
94y 1 0

+ vt |4, + By

( 65)

- | Lpop o0 (03 by + [ {IT] [D]}i 615

+ I {mImmly s+ (| {mglmm b

i i

If X, is a Lagrange multiplier one obtains the same expression as Eq. ( .65)

except the fourth line in Eq. (. 65) is replaced by

N L .
L, EKA][T][D]J_ s, + la,] EKB][T_][Dﬂ 8, ( .66)

i i

The elements in the generalized stiffness matrix BZH(xo)/axi axj are derived
in a similar way. The contribution of the first line of Eq. (. 44) to the sec-
ond variation of H is obtained by differentiating the right-hand side of

Eq. ( 64) with respect to q: and allowing {qb} to vanish:
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2 R.R,
3"H(q ) h T 12 ij
2l | Lad e ekl ] @
39, aqj 0
q=q,
(
_ BoRi
+ [LBj_l + LBORj,Q[][-'C] {B}, +
0
( 67)
( 3
JBE
_ 0]
+ [LBi__[ + [_BORi,O_l] [C] {B}j +
0
k ) )
1,2
L 2%
+ LRiRJ.,O_l [cl |[B] {q } +
0
i

The right-hand side of Eq. ( 67) can be simplified by combining lines 1 and
4 and lines 2 and 3. Doing so, adding the kinetic energy term derived from
Eq. ( 47), and including the remaining terms from Eqs. ( 44) and ( 46), one

obtains for the second variation of H associated with the kth finite element:

2 2 R.R
dH(q) 37H(x ) i3
—— = — = [I_qo_[ (81" + 382, O_l} [c]
9q, 3q 0x, 8x
_ Fo
+ {LBi_[ + 8, Ry 0_1] [c] |{B,} + ( 68)
0
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+ Nt MY h ' - ( 68
cont'd)

+ l:[KA][T][D]:Lj 61; + |:[KB]['T'][D]:lij 51£

+ QZEDﬂ%MnDﬂ by
ij

In Eqs. ( 65) and ( 68) subscript and superscript k denotes finite elemenﬁ
number and subscripts i and j refer to degree of freedom numbers the range
of which includes all degrees of freedom associated with the kth finite ele-

ment.

The governing equations for linear and nonlinear stress analysis, buckling
analysis, and modal vibration analysis can be obtained by insertion of the

right-hand sides of Eqs. ( 65) and ( .68) into Egs. ( 56) and (. 60).
Linear Stress Analysis

From Eq. (2.56) it is seen that the global equations governing equilibrium

are

N o%HGx) oL e

1 axiaxj k| 9x

( 69)
3= 1
i=1,2, ... N
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For linear systems the initial deformations {xo} or {qo} are zero and

{Ax} is replaced by {x}, since the A denotes '"change from a previous

known solution {xo}".

The (4i,j)th term of the local element stiffness matrix for the kth fin-

ite element is therefore given from Eq. ( 68) by

k T — Ak Bk
RKyy = 3, | [cI{B,} + NRiRjJ b + Qg 8, + Q8 ( 70)

in which the range of i and j covers the nodal degrees of freedom asso-
ciated with the kth finite element. [See Figure 11 and Eqs. ( 32), ( 33),

(- 36), and ( 37), for example.] 1In Eq. (. 70) lgi—l denotes the ith row

A
i3

the (i,j)th element of the matrix [KB][T][D].

of [B]T, {B,} the jth column of [B], Q the (i,j)th element of the

h|
— B
matrix [KA][T][D], and Qij

The ith component of the local force vector corresponding to the kth finite

element is given from Eqs. (. 65) and (. 69) by
P - [—lyT,MT_l{Bi} + Lpt,pn.OJ{Di}] b+ lmvu{mml e ¢ o

in which the range of 1 covers the nodal degrees of freedom associated with
the kth finite element. The linear stress analysis problem is formulated by
assembly of the terms K?j of the local finite element stiffness matrices
into the global stiffness metrix [K] and assembly of the components F?

of the local force vector into a global force vector {F}, yielding the

global linear equation system

[Kl{x} = {F} ( 72)
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Bifurcation Buckling and Modal Vibration Analyses

Bifurcation buckling and modal vibration are governed by Eq. ( 60). The
matrix of coefficients, BZH(xO)/ax?axg, i,j, = 1,2, ...N can be derived

from Eq. ( 68).

The terms in Eq. ( 68) have the following physical significance: The first
line represents the work done by the prebuckling (or pre-vibration) stress
and moment resultants, shown in Figure 15, during infinitesimal buckling
or vibration modal rotation, Bb. These stress and moment resultants are

given by

N2, 1 = [LgoJ[BlT‘f L%Bf,,O_l][Cl ¢ 73)

(Note that the prebuckling moment resultant Mo does not enter the buckling
equations because the second term in the vector [E;ﬁg,qj is zero. This
follows directly from the linearity of the assumed kinematic relationship

( 16b) between the change in curvature « and the displacement components
u and w. The second line in Eq. ( 68) represents a contribution to the
stiffness matrii of the structure as deformed by the loads. The amount of
deformation is given by Bo' The third line represents a contribution to
the work done by the thermal stress resultants during buckling or vibration

modal rotation éq The fourth line represents the constraint conditions.

" The last line represents a contribution to the mass matrix and the asso-

ciated modal vibration eigenvalue 92.

Unlike the case for linear stress analysis, described in connection with

Eq. ( 70), the case of bifurcation buckling or modal vibration in the
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presence of prestress involves initial deformations. The expression for the
stiffness matrix is therefore somewhat more complicated, The (i,j)th term
of the local element stiffness matrix [Kl]k for the kth finite element is

given from Eq. ( 68) by

BoRs
k N = T — Ak, B  k
Kjgg = @1J+ l_BoRi,Q_l][C] {Bj} + +N RiRj by + Q58 + Qij6L

¢ 74)

in which the range of 1 and j covers the nodal degrees of freedom associ~
ated with the kth finite element and the other terms are defined as before in
connection with Eq. ( 70). Equation ( 74) should be compared to the simpler

expression ( 70) for the linear stress analysis.

Bifurcation Buckling: The (i,j)th term of the local element "load-

geometric'" matrix [K2]k for the kth finite element arises from the first
line of Eq. ( 68):
k i3

Kpgy = [Nl otk ( 742)
0

1]
=
=
&

where [yo,Mo_[ are given by Eq, ( 73). In cases for which the temperature
rise is regarded as an eigenvalue, that is one wishes to find buékling temp-

iRi which in this presentation contributes to the

]k would instead appear in the "load geometric" mat-

eratures, the term N'R

stiffness matrix [K
' k

1

rix [KZ]
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The global bifurcation buckling problem is formulated by assembly of the

terms Kk of the local finite element stiffness matrices into the global

1ij

stiffness matrix [K and assembly of the terms Kk of the local finite

1] 21j
element load-geometric matrix into the global load-geometric matrix [Kz],

yielding the global bifurcation buckling problem
b b |
K 1x’} + AR 1x) = 0 ¢ 75)

In Eq. ( 75) A 1is a load factor to be multiplied by whatever the prestress

distribution in [K is. This distribution may, of course, vary along the

5]

reference surface.

Note that the effect of prebuckling rotation Bo’ which usually varies with
the loading, has been assembled into the stiffness matrix [Kl] rather than
into the load-geometric matrix [KZ]' This is not a rigorously correct
-procedure, If 80 varies with the buckling load, as is usually the case,

the eigenvalue problem assumes the general form
K 1{x} + AR x} + (K&} = 0 ¢ 76)

However, experience with difficulties assoaiated with the extraction of
eigenvalues of such quadratic systems has led to implementations in computer
programs in which the loading is divided into two.parts, a fixed part and an
"eigenvalue" part. The prebuckling rotations BO associated with the fixed
part are retained by inclusion of the Bo in the stiffness matrix as in
Eq. ( 74). The prebuckling rotations associated with the part of the load-

ing to be multiplied by the eigenvalue A are neglected, leading to a load-
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geometric matrix generated only from prebuckling stress resultants, as in

Eq. ( 75). Bifurcation buckling loads for systems in which prebuckling
rotations Bo are important are calculated through a converging sequence

of eigenvalue problems in which the fixed part of the load becomes very large
compared to the "eigenvalue" part of the load. An example of this type

will be discussed later.

Modal Vibrations: The stiffness matrix for the modal vibration of a pre-

stressed structure is given by

Kol = (K] + K] ¢

with Kl and K2

a straightforward manner from the last line of Eq. ( 68). The global modal

derived as just described. The mass matrix 1s derived din

vibration eigenvalue problem takes the form

K. Mx} + o Hx} = o ( 78)
vib vib

with [Kvib] given by Eq. ( 77).
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SECTION 3

ANALYSIS OF SHELLS OF REVOLUTION

The importance of this class of structures is attested to by the numerous
computer programs that have been written for analysis of stress, buckling and

vibration of axisymmetric shelils.,
Computer Programs

In Figure 16 the names of computer programs or their authors are located

in a space with coordinates that measure complexity of geometry versus gener-
ality of phenomenon. Each name indicates the capability of the corresponding
computer program to perform the analysis indicated by the intersection of
these coordinates. In this coordinate system increasingly general-purpose
computer codes lie increasing distances from both axes. Other codes, exist~
ing just outside of the region depicted, apply to structures that are 'almost'
shells of revolution, such as shells with cutouts, shells with material prop-

erties that vary around the circumference, or panels of shells of revolution.

The region shown in Figure 16 is divided by a heavy line into two fields:

Programs lying within the heavy line are based on numerical methods that

are essentially one-~dimensional, that is, the dependent variables are separ-
able and only one spatial variable need be discretized; programs lying out-

side the heavy line are based on numerical methods in which two or more spa-

tial variables are discretized. It is generally true that analysis methods




and programs lying outside the heavy line require perhaps an order of magni-
tude more computer time for a given case with given nodal point density than
do those lying inside the line, This distinction arises because the band-
widths and ranks of equation systems in two-dimensional numerical analyses
are greater than those in one-dimensional numerical analyses. Certain of

the areas in Figure 16 are blank. Those near the origin correspond in
general to cases for which closed-form solutions exist and for which slightly
more general programs are clearly applicable. The blank areas lying near

the outer boundaries of the chart are for the most part covered by more
general programs such as NASTRAN, SPAR, STAGS, STRUDL, ASKA, MARC, ANSYS,

and other general-purpose programs described in Ref. [ 24].

As of 1980 the most commonly used computer programs for complex shells of
revolution are those by Cohen [ 1], Kalnins [ 2], Svalbonas [ 3], and
Bushnell [ 18], [ 25]. A typical summary of the capabilities of such pro-
grams is listed in Table 1. 1In general the shell-of-revolution codes repre-

sent implementation of three distinct analyses:

1. A nonlinear stress analysis for axisymmetric behavior of axisymmetric

shell systems (large deflections, elastic or elastic-plastic).

2, A linear stress analysis for axisymmetric and nonsymmetric behavior of
axisymmetric shell systems submitted to axisymmetric and nonsymmetric

loads.

3. An eigenvalue analysis in which the eigenvalues represent buckling

loads or vibration frequencies of axisymmetric shell systems submitted
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to axisymmetric loads. (Eigenvectors may correspond to axisymmetric

or nonsymmetric modes.)

Some of the codes | 1, .18] have an additional branch corresponding to
buckling of nonsymmetrically loaded shells of revolution. In the BOSOR4
program [ 18] this branch is really a combination of the second and third

analyses just listed.
Advantage of Axisymmetric Geometry: Separation of Variables

The great advantage of the computer programs cited above is their effi-
ciency. This efficiency derives from the fact that for the three types of
analysis just listed the independent variables can be separated and an analyt-
ically two-~dimensional problem thus reduced to a numerically one~dimensional
model. Such a model leads to compact, narrowly banded stiffness, load-geo-
metric, and mass matrices, as we have seen from the beam analysis of the pre-
vious section. The reduction of these matrices for solving equilibrium and

eigenvalue problems is performed speedily on the computer.

For example, the independent variables of the BOSOR4 analysis [ 18] are the
arc length s measured along the shell reference surface and the circumfer-
ential coordinate 6. The dependent variables are the displacement comfon—
ents u, v and w of the shell wall reference surface. For the three types
of analyses listed above it is possible to eliminate the circumferential
coordinate ¢ by separation of variables: in the nonlinear stress analysis
6 1is not present; in the linear stress analysis the nonsymmetric load system

is expressed as a sum or harmonically varying quantities, the shell response to
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each harmonic being calculated separately; and in the eigenvalue analysis the
eigenvectors vary harmonically around the circumference. Buckling under non-
symmetric loads is handled by calculation of the nonsymmetric prestress dis-
tribution from the linear theory and establishment of an eignevalue problem
in which the prestress distribution along a given meridian, presumably the
meridian with the most destabilizing prestress, is assumed to be axisymmetric.
Thus, the 6-dependence, where applicable, is eliminated by the assumption
that displacements u(s,0), v(s,8), w(s,8) are given by un(s)sinrw,

vn(s)cosne, wn(s)sinne, or by un(s)cosne, vh(s)sinne, wh(s)cosne.

The advantages of being able to eliminate one of the independent variables
cannot be overemphasized. The number of calculations performed by the com—
puter for a given nodal point spacing along the arc length s 1is greatly re-
duced, leading to significant reductions in computer time. Because the numer-
ical analysis is "one-dimensional" a rather elaborate composite shell structure
can be analyzed in a single '"pass'" through the computer. The disadvantage is,

of course, the restriction to axisymmetric structures.
Energy Formulation — A Summary

The following analysis of a segmented, ring-stiffened shell of revolution is
similar to that for the beam given in the previous section. It is based on
energy minimization with constraint conditions. The total energy of the sys~—
tem involves (1) strain energy of the shell segments US, (2) strain energy
of the discrete rings Ur’ (3) potential energy of the applied line loads
and pressures Up, (4) kinetic energy of the shell segments TS, and (5)

kinetic energy of the discrete rings Tr' In addition the total energy
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functional includes constraint conditions Uc arising from (1) displacement
conditions at the ends of the composite shell, and (2) compatibility condi~-

tions between adjacent segments of the composite shell.

These components of energy and the constrairt conditions are initially ihtegro-
differential forms., They are then written in terms of the shell reference sur-
face nodal point displacement components u;s vy and LA and Lagrange multi-
pligrs Ai. The integration along the reference surface meridian is performed
numerically. Now an algebraic form, the energy is minimized with respect to
the discrete dependent variables, Uss Vis W, and Ai'
In the nonlinear stress analysis the energy expression has terms linear, quad-
ratic, cubic, and quartic in the dependent variables. The cubic and quartic
terms arise from the "rotation-squared" terms which appear in the constraint
conditions and in the kinematic expressions for reference surface strains el,
€ys and €19 Nonlinear material properties (plasticity) are not included
here. TFor details on plastic buckling the reader should consult Ref. [ 26].
Energy minimization leads to a set of nonlinear algebraic equations which

are solved by the Newton-Raphson method. Stress and moment resultants are
calculated in a straightforward manner from the mesh point displacement compon-
ents through the constitutive equations (stress-strain law) and kinematic
(strain-displacement) relations.

The results from the nonlinear axisymmetric stress analysis are used in the
eigenvalue analyses for buckling and vibration. The '"prebuckling" or "pre-
stress" meridional and circumferential stress resultants N, and Ny and

the meridional rotation Bo appear as known variable coefficients in the

energy expreésion which governs bifurcation buckling and modal vibration.
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This bifurcation buckling or modal vibration energy expression is a homogeneous
quadratic form, The values of a parameter (load or frequency) which render the
quadratic form stationary with respect to infinitesimal variations of the depend~-
ent variables represent buckling loads or natural frequencies. These "eigen-

values" are calculated from a set of linear, homogeneous equations.

Similar linear equations, with a "right-hand-side" vector added, are used for
the linear stress analysis of axisymmetrically and nonsymmetrically loaded
shells., The "right-hand-side" vector represents load terms and terms due to
thermal stress. The varilable coefficients NlO’ N20 and Bo mentioned above
are zero, of course, since there is no nonlinear "prestress' phase in the linear

nonsymmetric equilibrium analysis.
Basic Assumptions

The assumptions upon which the following analysis is based are:

(1) The wall material is elastic and behaves linearly.

(2) Thin~-shell theory holds; i.e., normals to the undeformed surface remain

normal and undeformed. Transverse shear deformation is neglected.

(3) The structure is axisymmetric, and in vibration analysis and nonlinear
stress analysis the loads and prebuckling or prestress deformations are

axisymmetric.

(4) The axisymmetric prebuckling deflections in the nonlinear theory, while
considered finite, are moderate; i.e., the square of the meridional

rotation can be neglected compared with unity,
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(5)

(6)

(N

(8)

(9

(10)

(11)

(12)

In the calculation of displacement and stresses in nonsymmetrically

loaded shells, linear theory is used., This analysis is based on stan-

dard small-deflection analysis.

A typical cross-section dimension of a discrete ring stiffener is small

compared with the radius of the ring.

The cross-sections of the discrete rings remain undeformed as the struc-
ture deforms, and the rotation about the ring centroid is equal to the

rotation of the shell meridian at the attachment point‘of the ring.
The discrete ring centroids coincide with their shear centers,

If meridional stiffeners are present, they are numerous enough to in-
clude in the analysis by an averaging or 'smearing' of their properties

over any parallel circle of the shell structure.

The shell is thin enough to neglect terms of order t/R compared to
unity, where t is a typical thickness and R a‘typical radius of

curvature,

Prebuckling in-plane shear resultants are neglected in the stability

analysis,

The integrated constitutive law is restricted to the form given in Eq.
( 84). For example, any coupling between normal stress resultants and

shearing and twisting motions is neglected.

45




Energy Components and Constraint Conditions

The various components of the energy (US’Ur’Up’Ts’Tr) and the constraint

conditions UC

are derived in this section.

The energy is derived for a

typical discrete ring. The total energy is obtained by summation over all

shell segments and all discrete rings.

Shell Strain Energy

A shell element is shown in Figure

wall is

U =

17. The strain energy in the shell

which is analogous to Egqs. ( .13) for the beam,

For an orthotropic wall material

%1 Eiq
% = |Ep
112 0
in which
Ejp = Bp/(1 -vypvyq)s
2

E12 £, - alT
E22 €2 - a.T
0 G €12
Eyy = E/A-
V12F99

46

%!s ."e fz{ol(el - alT) + 02(52 - azT) + leelz} rdzdeds

EPAZIL

79)

80)

81)



In Eds. ( 79) and ( 80) subscript 1 refers to the meridional coordinate
direction and subscript 2 refers to the circumferential coordinate direc-
tion. As with the beam analysis, T is the temperature rise above the zero
stress state., The coordinate 2z along the normal to the reference surface is
measured outward from an arbitrary reference, not necessarily from the middle

surface,

If "normals remain normal" and undeformed (a classical thin shell theory
approximation), the strains as functions of the thickness el(z), ez(z), and
elz(z) can be expressed in terms of reference surface strains €15 €9, and

e and changes in curvature Kis Ko» and Kqgs thus

12

€y = ey - 2K, €y ( 82)

It is convenient to perform the 2z integration in Eq. ( 79) at this point.

The following definitions of stress and moment resultants are required:

N, = foldz N, = fozdz le = ftlzdz
( 83)

M1 = —folzdz M2 = -fozzdz M12 = lezzdz

These stress and moment resultants are shown in Figure . 17. Substitution of

Eqs. ( 80) with Eqs. ( 83) yields

47




[, 3 r - ( 3 (T )
Ny €1 %2 © Gy G5 O e N
T
Ny Cla G 0 Gy G O ) N,
N 0 0 ¢ 0 0 ¢ e 0
412 _ 33 36 ) er + | T+ ( 84)
My Cio G O Gy Cs O Ky M
T.
M, €15 Cs 0 G5 G5 O K9 My
L¥12J ‘o 0 Cy O 0 Co6] LZKlzJ 0 J
in which the Ci' are given by
C;p = B[4z Cp [E,,dz i, = -JBjqzdz
Cis = fElzzdz C,y = [Bpdz €, -JE;,2dz
( 85)
Cys -[By,2dz €y = [cdz Cpo = J6zdz Ceg = [ozdz
2
Chs JE 274z [El,27dz  C., JE,,2"dz
T T T T .
and the thermal resultants Nl’ N2’ Ml’ M2 are given by
N = -[(E,,0,T + E, 0, T)dz
1 1171 1272
N = —[(E,.a.T + E, 0 T)dz
2 1271 2272
( 86)
ML = JE.  0.T + E .o T)dz
1 1171 1272
ML = [(E, a0 + E.a,T)dz
2 12%1 2272

The thickness coordinate 2z is measured from the arbitrary reference surface
outward. The integrations through the thickness in Eqs. ( 85) and ( 86) can

be performed explicitly for layered shells with material properties constant
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through the thickness of each layer, or. numerical integration can be performed
(e.g., Simpson's rule) for layered shells with temperature-dependent material
properties, Equations appropriate for laminated composite wall construction

are given later.

Equations ( 80) and ( 82) are analogous to Eqs., ( 18) and ( 15), respect-

ively, for the beam analysis, The Cij and Ni, Ng, M{, Mg in Eqs. ( 84) -

( 86) are analogous to similar quantities in Eqs. ( 20) and ( 21).

Using Eqs. ( 82), ( 83) and ( 86), one can write the shell strain energy in

Eq. ( 79) in the form

v, = % 'fe[:_s_l{e}"'LNH{'E}‘*C(T):lrdeds ¢ 87)
8

in which

m

Lsd

[Ny 595Ny My My My |

T T
e = lejsepiep5,Kq5K)5 26y, |

{e}

2
tn

T T T. . T
wl,Nz,o,Ml,Mz,o_J

and C(T) is a function of the shell parameters and temperature rise only.

Therefore it can be dropped. Since

ls| = 83T [[C] {e} + {NT}]T

Lelter®™ + |n%  88)

Leltc] + |n']
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substitution of Eq. ( 88) for Lﬁj_and the dropping of C(T) in Eq. ( 87)

leads to

6x1
6x
u, = 3 [ilellci{e} +‘2LN?l{e}, rdeds ( 89)
s 6

which is analogous to Eq. ( 20) for the beam.

Strain~-displacement and curvature-displacement relations valid for moderately

large relations are

e ut 4 w/R +38% + yD)
e, v/t + ur'/r + W/R2 + %(wz + Yz)
e o/t + r(v/r)' + By
{e} = [ 120 . ¢ 90)
Ky B'
Ky V/r + r'B/r
2K12 2(~B/r + r'y/r + v'/Rz)
in which
B = w' -u/R, y o= w/r - v/R,
( 91
Yy = 3(a/r - v' - r'v/r)

Dots indicate differentiation with respéct to the circumferential coordinate
0; primes indicate differentiation with respect to the meridional coordinate
s. Positive values of u, v, w, B, y, and <y are shown in Figure 17,
The quantities R, and R, are the meridional and normal circumferential

1 2

radii of curvature. Equations ( 90) and ( 91) are of the Novoshilov-Sanders
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type [ 10, 11]; they are analogous to Eqs. ( 16) and ( 17) for the curved
beam. The same equations form the theoretical basis for Cohen's computer pro-

gram [ 1].

Discrete Ring Strain Energy

Figure 18 shows a ring cross section with displacements Uls Vs W, B of
the centroid and applied loads V, S, H, M. The ring cross-sectional area A
is greatly exaggerated relative to its centroidal radius r.. The centroid
and the shear center are assumed to coincide and plane normal sections are

assumed to remain plane and normal during deformations. In the absence of

warping, the ring strain energy is given by

™e
+
[«
S~
a1
N
N
o
<
~
A=
N
A

v, = (r./2) fe{x o (e, - o T)dAde + 3(cI/r ) fe ( T,

in which A dis the ring cross-section area and GJ is the torsional rigid-

ity.
The ring hoop stress is given by

o, = E[e, - 0T ( 93)

The hoop strain €, can be expressed as a function of strain of the centroidal

axis plus terms due to in-plane and out-of-plane curvature changes Ko and «_,

respectively:

£ = e. - Xk, + yKy ( 94)
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Substitution of Eqs. ( 94) and ( 93) into Eq. ( 92), integration over the
ring area, and the dropping of the term which contains only ring parameters

and temperature, leads to the following expression for the ring energy:

U = (r/Z)f(ezEA+K2EI + 2B 1 - 2k E I
T c LT T Xry yrx X'y I Xy
+ (GJ/rz) (é +u /r )2 ( 95
c c' e
+ ZENT+KMT+KMT:[]de
rr Xy y x
in which
No = -[E o TdA
r TT
( 96)
T = T = -
M.y = +fErarTdi Mk fErarTydA
The ring kinematic relations are
. 2 2
- i
e v /x, tw [t + z(wc + yc)
2 T wc/rc
Ky = Y/t + B/rc ¢ 97
L (wc - vc)/rc
Y. = ﬁc/r

Equations ( 92) - ( 97) are analogous to Eqs. ( 79) - ( 91) for the shell.
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Potential Energy of Mechanical Loads

Two types of loads are permitted in the analysis: 1line loads and moments V,S,H
and M, which act at ring centroids and at shell segment boundaries, and surface
tractior}s P1sPy and pressure p'3. These loads are shown in Figures 17 and 18, The
potential energy associated with constant-directional line loads at a given ring

station 1s

L - fe (- vu, + sv_ +Hw_ +MB)r de (.‘ 98)

The potential energy assoclated with constant directional surface tractions Py

and Py and pressure Py is

Up2 = -'L‘g(plu + P,V + p3w)rdeds ) ¢ .99)

These equations are analogous to Eq. ( .22) for the beam. Additional terms re-

quired to account for following or "live" loads are introduced later.

Kinetic Energy of Shell Segment

The kinetic energy of the sﬁell segment is given by

T = %[ m(uz, + v +W2t)rd6ds ( 100)

,t ’t 3

in which () ‘ denotes differentiation with respect to time. The shell
]

rotatory inertia in neglected.




Kinetic Energy of Discrete Ring

The kinetic energy of a discrete ring stiffener is given by

2 2 2
T, = pr[rclz] feE\(uc’t Vg ¥ Wc,t)
( 101)
+Ie,2+1¢2 +Iy2 +211py:[de
Pt s’c,t nc,t sn'c,t ¢c,t

in which Ip’Is’In’Isn are cross-sectional area moments of inertia relative

to axes normal and tangential to the shell meridian at the ring attachment
point. In the case of harmonic oscillations, the differentiations with respect
to time are replaced by a factor Q, which is a frequency parameter, Equations

( 100) and ( 101) are analogous to Eq. ( 28) for the beam.

Constraint Conditions

Figure 19 shows a meridional discontinuity (+,-) between two adjacent shell

segment reference surfaces and discontinuities at shell edge support points

"A" and "B"., . The compatibility conditions for the junction are
*. * * %o *
u*'+ = u + Au v + = v + Av
( 102)
* * * -
W= w4 g7 = g
in which
* 2
bu = - (dls + 4,8 /2)
% % oke k. - K oke , -
Av = - (d1 + MwYw -v )/r - (d2 + Au )u /r ( 103)
* — _ 2
Aw = dZB dlB /2
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The constraint conditions ( 102) arise from the requirement that the motion
of the point (+) relative to the point (-) involves no deformation of a
line joining the meridional gap (+,-) and compatibility of meridional rota-
tion B across this (+,-) gap is enforced.

At a support point the terms u*+,v*+, and W*+ in Eqs. ( 102) are con-
strained to be zero if the appropriate boundary condition integers KAl’KAZ’
etc., and KBl’KB2’ etc (see below), are equal to unity, The constraint con-
ditions ( 102) are incorporated into the total system energy by the introduc-
tion of four Lagrange multipliers Al,AZ,AB, and AA for each edge support
and each segment junction. Thus, the "energy of constraint" corresppnding

to each junction has the form

oL ru
v*+ - v*— - ,Av*
UC = .L)‘l_sxz,’A:B’)‘z}J"w*_*_ _ w*_ _ AW*P' ( 104)
+ -
g - B

At the shell ends the constraint conditions have the following forms:

at end point "A"

[ %- %)
-u - Au
Fo *

-V - Av

= * * ) ¢

Ve |Ka1*y Kan*Rp Kag*hgoKas ¥y |1 e x ( 105a)

-W - Aw
-8~
\ J
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at end point "B"

%o *
-u - Au
*-. X
-V - Av
Ye -~ E(Bl*xl’KBZ*XZ’KBE}*)‘B’KBa*}“@lJ_w*_ ] ( 105b)
\_B J ’

These equations are analogous to Eqs. ( 26) for the beam.

Variable Transformations

The components of energy of the system are represented by the shell strain
energy U_ [Eq. ( 89)], the strain energy of a discrete ring U [Eq.
( 95)], the potential energy of line loads Upl and surface tractions

U [Eqs. ( 98) and ( 99)], the shell kinetic energy TS [Eq. ( 100)1,

P2
and the discrete ring kinetic energy Tr [Eq. ( 101)]. The constraint

conditions UC are given by Eqs. ( 104) and (. 105).

It is desired to express all energy components in terms of the shell refer-
ence surface displacements u, v, and w. The displacements U,s Vo and

v, of the ring centroid (Figure 18), which appear in Eqs. ( 95), ( 97),

( 98), and ( 101), are given by
* % * *
u = u + Au v, =V + Av LA + Aw ( 106)

* * *
The quantities Au , Av , and Aw are given by Eqs. ( 103) with d1 and

d2 replaced by e1 and ez, ‘the ring eccentricity components (Figure 18),



- k- k- o
and u ,v ,w ,r replaced by the displacement components and radius

* k%

u ,v ,w ,r which correspond to the ring attachment joint. The axial, cir-
* % *

cumferential, and radial displacement components u ,v , and w , which

appear in Eqs. ( 102) - ( 106), are given by
*
u = ur/R2 - wr' v = v w = ur'+ wr/R2 ( 107)

which is analogous to Eq. ( 42) for the beam.
x
Eqs. ( 106) and ( 107) can be used to eliminate u.,v,w, and u,v, and
*
w from the energy components and constraint conditions. The dependent var-

and },.

iables are then u,v,w and the Lagrange multipliers Al’Az’A3’ 4

The total energy in the system is obtained by summing over all shell segménts,

discrete ring stiffeners, junctiems and boundaries,
Separation of Variables
The dependent variables u,v, and w are functions of arc length s and

circumferential coordinate 6. The @ dependence can be eliminated from

the analysis by the assumption that

Thax : Mhax
u(s, 8) = uo(s) + _2 unl(s) sinnd + z unz(s) cos nd

=n n_,

min min
_ 108)
v(s,8) = ) vnl(s) cosnf + ) an(S) sin |n|6 ( )
n n

w(s,0) = wo(s) + E wnl(s) sinng + z th(S) cos nd

n
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The temperature distribution, surface tractions and pressures, and thermal and

mechanical line loads have similar expansions, which are given explicitly later.

If the expressions ( 108) were inserted into the energy components just de-
rived, all the harmonics would couple in the analysis, since the kinematic

relations ( .90), (. 97), and ( 103) are nonlinear.

In the analysis, large deflections are permitted in the axisymmetric components,

but the nonsymmetric harmonics are considered to be small, The various harmon-

ics do not couple, and a solution for each un(s), vn(s), and wn(s) can be
obtained with the circumferential wave number n appearing as a parameter in
the analysis. The 6 dintegration indicated in Eqs. ( 89), ( 95), and ( 98) -
( .101) is replaced by a factor of 7 for n# 0 and 27 for n=0. In a
linear stress analysis for nonsymmetrically loaded shells, the static response
of a shell to arbitrary varying loads is obtained by superposition. (In this
case, even the axisymmetric components are assumed to be small.) In buckling
and vibration analyses the "small'" deflections W 1oVn1o Va1 08000 Voo Vo 3T
considered to be kinematically admissible variations from the "prebuckled" or
"prestressed" axisymmetric state represented by the large deflections uo(s)
and wo(s) in Eqs. ( 108). The uo(s) and wo(s) are determined in the
nonlinear stress phase of the analysis by Newton-Raphson iterations, as de-

scribed in the discussion associated with Eq. ( 56),

In the linear analysis for nonsymmetric behavior and in the buckling and vibra-
tion analyses, the second summations in Egqs. ( 108) can be represented by zero

or negative values of the circumferential wave number, n.



Discretization

The 6 dependence has been replaced with a parameter n, so that only one

independent variable remains--the arc length s. Figure 20(a) shows a shell
meridian of two segments, and Figure 20(b) shows a discretized model. The
continuous variables u(s), v(s), and w(s) are replaced by diécrete varia~

bles ug, vy, and v The ug and v, occur at stations midway between

the w, in a manner analogous to the discretized beam model showm in Figure

i

11, With constant nodal point spacing within each shell segment, as shown
in Figure 20(b), the energy is evaluated at the mesh points where the LA
are located. The displacements and the s derivatives required in the energy

are

u = [ui + ui_l}/Z, v = (Vi + vi_l}/Z
u' = (u, -u )/ vi = (v, -v, .}/
i i-1/"" i i-1 ¢ 109)
wo= oWy, w' (Wi+l -, 1}/Zh,
w' = (Wi+1 - 2wi + Wi_l)/h2

in which h 1s the mesh point spacing. These expressions are analogous to

Eqs. ( 32) for the beam.

If the nodal point spacing varies within a shell segment, the expressions for
u, v, u', and v' remain as given in Eqs. ( 109), but the three-point formulas

for w, w', and w" become




E 11 %12 %13 Wi-l1
(I R TR VP B S (110
W"J 431 %32 %33 |[Yix1
in which k B T
a, = (h-1)CGk+h/[16(0° + hl)]
aj, = (h+ 3K)(3h + k)/(16hk)
a, = (k-h)(3h+ K)/[16(k> + hk)]
ay, = -1/2h &y, = (1/2h - 1/2K) a,, = 1/2% ( 111)
8y, = 2/[h(h + k)]
aj, = -2/ (hk)
ay, = 2/[k(h+ 1]

The quantities h and k are defined in Figure 21,
Finite-Difference Energy Method vs. Finite Element Method

The discretization technique just described has been called the "finite differ-

ence energy method". This method is described in detail and compared to the finite

element method inRef. [ 19]. Figure 21 shows a typical shell segment meridian with

variable nodal point spacing. As in the case of constant nodal point spacing
shown in Figure 20, the 'u' and 'v' points are located halfway between
adjacent 'w' points. The energy contains up to first derivatives in u and
v and up to second derivatives in w. Hence, the shell energy demnsity eval-
uated at the point labeled E (center of the length £) involves the seven
points LA through LAE The energy per unit circumferential length is

simply the energy per unit area multiplied by the length 2 of the finite-differ-
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ence element, which is the arc length of the reference surface between two
adjacent u or v points., This formulation yields a (7 x 7) local element
stiffness matrix corresponding to a constant-strain, constant-curvature-

change finite element that is incompatible in normal displacement and rota-
tion at its boundaries but that in general gives very rapidly convergent re-
sults with increasing density of nodal points, Note that two of the w-points
lie outside of the element. If the mesh spacing is constant, the algebraic
equations oﬁtained by minimization of the energy with respect to nodal degrees-
of-freedom can be shown to be equivalent to the Euler equations of the varia-
tional problem in finite form [ 19], Further description and proofs are

given later and in Ref. [ 19].

Figures 2 and 22 show rates of convergence with increasing nodal point
density for a poorly conditioned problem--a stress analysis of a thin, non-
symmetricaily loaded hemisphere with a free edge. The u and w displace-
ment components at 8 = 0 are plotted in Figure 1. The finite-element
results indicated in Figure 2 were obtained by programming various kinds of
finite elements into the BOSOR4 program [ 18]. The computer times for compu-

tation of the stiffness matrices K., are shown in Figure 22, A much smaller

1

time for computation of the finite-difference K, 1is required than for the

1
finite element Kl because there are fewer calculations for each 'Gaussian’
integration point and because there is only one 'Gaussian' point per finite~
difference element., Other comparisons of rate of convergence with the two

methods used in BOSOR4 are shown for buckling and vibration problems in Ref,

[. 19].
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Energy Functional Converted to Algebraic Form

With the substitution of Egqs. (2.108) in the various energy components and con-
straint conditions, the replacement of s derivatives by Eqs. ( 109) or ( .110),
the replacement of time derivatives by a frequency parameter 4i{, and the num-
erical integration over s and exact integration over 6, the system energy

and constraint conditions are now represented by an algebraic form which con-
tains as dependent variables Ui, Voo and v, and the Lagrange multipliers Al’
AZ’ AB, and A& (for each junction and boundary). The algebraic form also
contains as parameters the shell and ring properties, the loads and temperature,

arid the frequency parameter g.
Stress, Buckling, and Vibration Analyses — A Summary
Nonlinear Stress Analysis

In the nonlinear stress analysis only the axisymmetric components of the load
are considered and only uo(s) and wo(s) in Eqs. ( 108) are nonzero. Terms
linear through quartic appear in the algebraic form for the total energy, as
with Eq. ( 44) in the beam analysis. The simultaneous nonlinear algebraic
equations obtained by energy minimization with respect to the nodal point
displacement components Uog and Vot and Lagrange multipliers Ai are solved
by the Newton-Raphson method, as described in the discussion associated with

Eq. ( .56). The coefficient matrix for each iteration is symmetric and is
strongly banded about the main diagonal., Such narrowly banded systems can be
solved in a matter of seconds of computer time. TFor example, a BOSOR4 case

with about 200 degrees of freedom requires somewhat less than about 2 seconds

b2



per iteration with double precision on the UNIVAC 1108 computer. The number
of iterations required depends on how nonlinear the problem is, Generally,
less than about five iterations are needed for convergence at a given load

level.

A reasonable convergence criterion for the nonlinear prebuckling solution at

each load step is that successive values of all u greater than a

io* Yio
tenth of the largest displacement be different by less than 0.1% of their
absolute values, The starting vector for the first iteration at the first
load vglue is zero, which means that the first solution represents the linear
theory solution. The starting vectors for the first iterations at subsequent
load values are the converged solutions obtained at the loads immediately
preceding the current load. Once the displacements uio and wio have

been calculated, the reference surface strains and stress resultants are

obtained in a straightforward manner by means of Eqs. ( 84) and ( 90).
Bifurcation Buckling and Modal Vibration

In the buckling and vibration analyses the symmetric and nonsymmetric dis-
placement components contained in the summations indicated in Eq. ( 108)
are considered to be infinitesimal, kinematically admissible variations of
the displacements from the '"prebuckled" or '"prestressed" state obtained in
the nonlinear stress analysis described above. Since the "buckling'" dis-
placements s Voo and w  are infinitesimal, one need only retain linear
terms in s Vo, and v, in the kinematic relations and constraint con-
ditions. However, it must be remembered that the displacements and rela-

tions in Eqs. ( 90) to ( 106) represent the total displacements from
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the undeformed state. Hence, cross-product terms such as wéw& obtained by
insertion of Eqs. ( 108) [with the use of Eqs. ( 91) and ( 109)] into Eqs.

( 90), for example, must be retained. The energy minimization in the buckling
and vibration analyses is performed with respect to W Vs W and the- Lagrange

multipliers,

The buckling and vibration analysis is described in detail below. Here it is
sufficient to point out that the energy expression on which the numerical analy-
sis is based is a homogeneous quadratic form. The form is stationary with re-
spect to the dependent variables Wes Vo W and the lagrange multipliers A
for certain discrete values of a parameter--the so-called eigenvalues. The

eigenvalue parameter can be a load or load ratio, a temperature, or a frequency.

Linear Equilibrium for Nonaxisymmetric Loading

The linear stress analysis is based on the same equations as the stability and
vibration analysis, except that the "prestress" terms which appear in the sta-
bility and vibration quadratic form are not present, and the gradient of the
energy functional is not homogeneous, since a "right-hand-side" vector is
nonzero, This vector arises from the thermal terms in Eqs. ( 89) and ( 95)

and the load terms in Eqs. ( 98) and ( 99),

Corresponding to the nonsymmetric portions of wu(s,8), v(s,8), and w(s,d)
given in Eqs. ( 108), the temperature rise distribution T, surface trac-
tions P1s> Pos and pressure Pys mechanical 1ine loads V, S, H, M and

thermal line loads Nz, Mg, Mi have the following expansions:
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T(s,8) = rz! Tnl(s)sinne + rzl Tnz(s)cos nb

Pl(Sae) = E plnl(S)Sin né + Izl plnz(s)cos nb

Py(s,8) = Pon1

=2 ]

(s)cosnb + E PZnZ(S) sinn®

P3(S,9) = Z P3n1(s) sinnb + z p3n2(s)cos nb
n n
vy = ) ansinnﬁ + ) Vnzcosne
n n
5(6) = ]S cosmd + ]S ,sinnd ( 112)
n n
H(®) = ] Hnlslnne + ] ancosne
n : n
M(6) = z Mnlsin nb + z ancos nd
n n
T _ T T
Nr(e) = ) Nrnlsin né + } N_ pc0s nd
n n
T _ T | T .
My(e) = rzl Mynlsin nb -+ g MynZCOS nb
T T T
8 = o + 0
Mx( ) E MXHlsinn E M%nzcosn

in which Nz, Mg, and Mi are given by Eqs. ( 96). As with Eqs. ( 108),

the first summations on the left-hand-side correspond to positive or zero =n

and the second summations to negative or zero n.
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Energy in Terms of Nodal Degrees of Freedom

Strain Energy of Shell Segment

For constant nodal point spacing the shell reference surface displacement

components u, v, w can be written in terms of the nodal displacements in

'the form
u 3x7
v = [D] {q} ( 113)
w
in which
o 1/
3x7 0 1/2 0 0 1/2 0
[p] = 0 0 1/2 0 0 1/2 0 ( 114)
0 0 0 1 0 0 0
and
T
Lal = (@ = oy gy ug g, vygs gy vy, vy ¢ 113

The reference surface strain, change in curvature, and twist are given, from

Egqs. ( 90) and ( 109) by

( 3

€9 (8% + v9)
€ 6x7 By
{e} = J 120 . [Bl] {q} + ) > ( 116)
Ky 0
Ko 0
2 0
(12, | J
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in which

0 —1/h 0 1/R,
0 ri2r —n/2r 1/R,
1 7
0 2 —_———
B = e ( P 0
T 1 [ Ry . 2
K kR, 2 R
~r'/2rh —r'/2rR, n/2rR, —n¥/r?
n L r_2)
| rh rR, rR, hR, ”
1/h 0o 0 | '
11
rf2r ~n/2r 0 ( &
I r
2 ——
nf2r . (h Zr) 0
1Ry 0 !
hR, 2 n?
—r'/2rR, n/2rR, r'farh
L _r 2y
rR, rR, hR,] " rh ]
Equation ( 117) is based on the assumption that for n > 0
u(s,ve) = un(s)sinne, v(s,0) = vn(s)cos ng; w(s,d) = wn(s)sinne ( 118)
and for n =20
u(s,8) = u(s); v(s,0) =v(s); w(s,8) = w(s) ( 119)
The rotation-displacement relations ( 91) can be written in the form
8 3x7
= {w} = [R] {q} ( 120)
Y
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where

357 ~1/2h  —1/2R, 0 0 —1/2R, 0 1/2h
[R] = 0 0 —1/2R, njr 0 ~1/2R, 0 ( 121)

1 1 r
0 ——— ————
n/4r ‘Zh 4r) 0 n/4r ( ) 0

Equations ( 113) - (. 117) are analogous to Eqs. ( 34) - ( 38) for the
curved beam, Equations (. 120) and ( 121) are amalogous to Egqs. ( 63) and
(2.40), respectively. Insertion of Eq. ( 116) into Eq. ( 89) yields an
expression for the strain energy of the shell which is analogous to Eq. ( 44)
for the beam. The only differences are the dimensions of the vectors and mat-
rices and the fact that the shell energy must be integrated over 6 as well

as over s,

The nonlinear axisymmetric "prebuckling" (or in a modal vibration calculationm,
"prestress') analysis is carried out after specializing Eqs. ( 116) and ( 117)
to axisymmetric displacements, that is, after setting €195 Kyps Y» y and n

equal to zero.
Other Components of the Energy

A similar procedure is followed for the strain energy of the discrete rings.
(Remember the smeared rings and stringers are included by appropriate modifi-
cation of the 6x6 integrated constitutive law [C] !) The potential energy‘
of the applied loads, the kinetic energies of the shell and of the discrete

rings, and the junction and boundary conditions are handled in an analogous

way.
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Bifurcation Buckling Analysis
Two Sets of Loads

The bifurcation buckling problem represents perhaps the most difficult of the
three types of analyses performed by shell-of-revolution computer programs.

Therefore, details of the formulation are given here.

It is practical to consider bifurcation buckling of complex, ring-stiffened
shell structures under various systems of loads, some of which are considered to
be known and constant, or 'fixed' during a computer run and other of which are

considered to be unknown eigenvalue ﬁarameters, or 'variable',

The notion of 'fixed' and 'variable' systems of loads not only permits the
analysis of structures submitted to nonproportionally varying loads, but also
helps in the formulation of a sequence of simple or 'classical' eignevalue
problems of the form of Eq. ( 75) for the solution of problems governed by
'nonclassical' eigenvalue problems of the form of Eq. ( 76). An example is

a shallow spherical cap under external pressure, such as shown in Figure 23,
Very shallow caps fail by nonlinear collapse, or snap-through buckling, not

by "bifurcation buckling. Deep spherical caps fail by bifurcation buckling

in which nonlinearities and edge effects in the prebuckling phase are not
particularly important. There is a range of cap geometries for which bifurca-
tion buckling is the mode of failure and for which the critical pressures are
somewhat sensitive to predictable nonlinearities and nonuniform deformations
in prebuckling behavior. The analysis of this intermediate class of spherical

caps is simplified by the concept of 'fixed' and 'variable' pressure.
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Figure 23 shows the load-deflection curve of a shallow cap in this inter-
mediate range. Nonlinear axisymmetric collapse (pnl), linear bifurcation
(plb), and nonlinear bifurcation (pnb) loads are shown. The purpose of
the analysis in this section is to determine the pressure Pope It 1s useful

to consider the pressure P as composed of two parts

_ f
Pp = P tAdp ( 122)

in which pf denotes a known or 'fixed' quantity, ) is an eigenvalue, and

Ap 1is a known load increment. The fixed portion pf is an initial guess or
represents the results of a previous iteration., It is clear from Figure 23
that if pf is fairly close to Py the behavior in the range p = pf + AAp
is reasonably linear. Thus, the bifurcation point pnb can be calculated by

means of a sequence of eigenvalue problems of the form

E(l(p’zm))]{x}+AE(Z(Ap(m)):[{x} = 0 ( 123)

through which, for increasing iteration index (m), ever and ever smaller

values of AAp(m) are determined and added to the known results pim) from

the previous iterations. The initial guess pfo) need not be close to the solu-
tion pnb‘

The matrix K, is the stiffness matrix including the effects of the 'fixed'

1

loads pim). The matrix K2 is the 'load-geometric' matrix and is proportional
to the stress resultant increments due to the known load increment Ap. The

derivation of these matrices follows,

As in the case of the beam analysis, it is known that an axisymmetric equil-

£ £ f £ . .
ibrium state {xo} = {(uo, N wo)} exists corresponding to the 'fixed'
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load p = pf. The object of the bifurcation buckling analysis is to determine

whether {xg + xb}, where {xb} is an infinitesimal, nontrivial, kinematically

admissible buckling mode, also represents an equilibrium state at p = pf.

First a prebuckling solution {xi + Axo} is obtained at a neighboring load
p = pf + Ap. (Note that {Axo} is a finite quantity, not infinitesimal as is
the buckling mode {xb}.) The total displacement {x} = {u}, {v}, {w} is given

by

f b f b » f b
{u} = {uo + du_ +u b (v) = {v0 + v+ }s {w} = {wo + b+ b 124)
Shell Strain Energy

When the right-hand-sides of Eqs. ( 124) are inserted into Eqs. ( 90), the
total reference surface strain and curvature-change vector can be expressed in

the form
e} = {1 + D} 4+ [P ( 125)

in which {e(o)} represents the contribution of the displacements {xi + Axo};
{e(l)} represents the contribution of the terms that are linear in the infini-
tesimal modal displacements {xb}; and {e(z)} represents the contribution of
the terms that are quadratic in {xb}. The strain energy US in Eq. ( 89)

can be arranged such that terms of similar power in {xb} are collected

U = U(O) + U(l) + U(Z) + ... . ( 126)
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The zero-th order terms in Eq. ( 126) can be dropped because they are independ-
ent of the dependent variables {xb}. The first order terms, when combined with
the other components of the total energy functional H, cancel because {xi +

Axo} is an equilibrium state. Terms of higher order than second in {xb} are

vanishingly small compared to U(Z). Hence, the expression for U(z) governs
bifurcation buckling. From Eq. ( 89) one can write
(2)  _ 1 1
U = %] {)lf( Jie{e® Y+ 2[99 [1¢) + [y?j]{e(z)} rdéds  ( 127)
s

Analogous expressions can be written for the discrete ring strain energy [Eq.

( 95)] and the junction and boundary conditions, Eqs. ( 104) and ( 105).

f
If the prebuckling state {xo + Axo} is axisymmetric and torsionless, the
first order strain and curvature-change vector {e(l)} calculated from Eqs.

(. 90) is given by

r
N

b' b f b
u + W R + +.

+b
v/r + ubr'/r + wb/R2

(1) 1'lb/r + r(vb/r)' + (Bf + AB )wb
{e } { o )
8P : ( 128)

WP o+ rebr

L 2(-8%7¢ + s 4 vb'/Rz)

The second order terms {9(2)} are given by
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(@} = | gPyP . ( 129)

From Eq. ( 84), the quantity (Lg(o{l[c] + [y?l) in Eq. ( 127) can be writ-

ten as [§O_L where

B s51 + |os_|

£ £ f
[Nyg> Nygs 0> Mygs Mpgs O] (130

+ [Ny, Ny, 0, M, AMy0, O]

It can easily be verified that the second product in Eq. ( 127) can be trans-

formed as follows

2ls_ feP} = [WI[nE 4 AN;I{wb} ( 131)
in which

L] = [8% ¥, 47 | ( 132)

N o o | [an 0 o

10 10
£ £ |
qu + ANC;[ 0 N, 0 o any, 0
£ f

0 0 (Mgl | O 0 (avygramy)|

( 133)
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The ABO should be neglected in Eq. ( 128) because these terms contribute

to the stiffness matrix [Kl(p(m))], which is to be evalauted at pim), not

at pim) + Ap(m). The vector {e(l)} can be written in terms of the nodal
point degrees of freedom Lg?i:
6x7 6x7
1 f b
e®y = [[Bl] + eo[le] {a’} ( 134)
in which [Bl] is given by Eq. ( 117), [B2] is given by
-1/20 -1/2R, 0 0 -1/2R, 0 1/2h]
0 0 0 0 0 0 0
0 -1/2R -
[le = 0 1/2 9 n/r 0 1/2R2 0 ¢ 135)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0
N 0 0 0 _

and {qb} is given by Eq. ( 115) with superscript "b" added, The rotatiom
vector LﬂLl is expressed in terms of the nodal point degrees of freedom in

Eq. ( 120) and ( 121).

Using Eqs. ( 120), ( 131), and ( 134); integrating over 6 (multiply by
2w if n=0, m if n#0); and integrating over s (multiply by h), one can trans-

form the shell strain energy expression ( 127) into the form

7x6 6x7
1x7 T 6x6
(2) _ (m or 2w) fo f
i = A hr l_qu [ESl + 88| fc) [Bl + BoBz_-I
s 33 5] 7;;)1
+ )] [Nf_l &l {¢°} ¢ 136)
-

b Z§3T 3x3  3x7
+ [q_| [R]™ (AN ] [R] {q}
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in which ¥, 1Is the radius r [Figure 20(a)] evaluated at the midlength of

k
the kth finite element. For the kth finite element the local stiffness mass
- k
matrix | K (p El of the shell as loaded by the 'fixed' loads pf is
17 ™1 she1r (m)
given by hrk times the first set of terms inEq. (..136) that are premultiplied by
-tk
Lg?j and postmultiplied by {qb}, The local load-geometric matrix [%Z(Ap(m)lj
shell

is given by hr, times the second set, that is

k
k o _
E(Z(Ap(m)lhell = hr, [R]” [AN ] [R] ( 137)

The K? and Kg just described are analogous to the local stiffness and load-
geometric matrices for the curved beam, given in Eqs. ( 74) and ( 75), re-
spectively. These local matrices are assembled into the global matrices of

Eq. ( .123) in the same way as described in connection with the discussion
associated with Figures 12 and 13 for the curved beam. Figure 24 shows

the format of the global stiffness matrix [Kl] corresponding to the two-

segment discretized model in Figure 20(b).
Strain Epnergy for a Discrete Ring Stiffener

The strain energy Ur of a discrete ring, given by Eq. ( 95), can be expanded

in the same manner as that of the shell,

_ (0 (1) (2)
UL A B A R At T ( 138)
Again, it is Uiz) that governs bifurcation buckling
2) 1 @ O] @+ |§]) (@
U - 7'[9 ] € {e,77) + 2fle ] 161+ [N ]| {e, }{r a0 C 139)
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in which, from Eqs. ( 95) and ( 97)

b b
€, vc/rc + wc/rC
*b
K v /r
(1) x c
b b
Ky Yc/rC + B /rC
ob 'b 2
K
xyj B /rc + uc/rc
r 2 2\
%wc + %YC
0
{eiz)} J b
0
0
L J
E A 0 0 0
bxb 0 EI -EI 0
@ = 'y r Xy
0 -E I E X 0
r Xy rx
0 0 0 GJ

and

T T

( 140)

( 141)

( 142)

( 143)

with Nz, My, M’ given by Eqs. ( 96). As with the shell strain energy, the

X

term [LEéon [G] + [ﬁz_[] in Eq. ( 139) represents an axisymmetric prebuckling

7€



force and moment l§ro—l in the ring. L§ro~l can be written in the form

f f f
l-§ro—J' - |-§1:o—-l+ LASro—l - |-gro’ 0, Mro’ Ql + l-éNro’ 0, AMro’ QJ ¢ 144)

The second product in Eq. ( 139) can be expressed in the form

2o Lot = Lebl 7L, + o, | 1) ¢ 145

i which
b b b
Lo Lo.s vod . ( 146)
N 0 ant 0
—f _ ro ro
E\I + AN] = + ( 147)
ro ro £
0 N 0 AN
o ro

The quantities Nio and ANro represent the prebuckling ring hoop force due
to the 'fixed' load pfm) and change in load Ap(m), respectively. The pre-
buckling ring moment does not appear in Eq. ( 147) because the ring curvature-

change expressions are linear.

It is necessary to express the discrete ring strain energy Uiz) in terms
of the shell reference surface nodal point degrees of freedom LSEJ' . First

Eq. ( 140) can be written in the form

v
x4 c

4
Py = mad | ( 148)
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where

B ]
0 —n/rC 1/rC 0
0 n/ri —nz/ri 0
4x4
T
nz/r2 0 0 l/rc
c
E/rz 0 0 n/rc

Equations ( 97d) and ( 97e) for the rotation comﬁonents wc and Y, Wwere

used in the derivation of Eq. ( 149), Similarly,

db‘
u
c
b b
{ b} wc 2x4 4vc
W = = [B ] - ( 150)
¢ b A
Yc WC
b
B
in which
0 -1/r n/rc 0
[B] = ¢ ( 151)
w n/rC 0 0 0

Next, it is necessary to express the vector Lg s vc, w o? B_J in terms of dis-

* *
placement components LE b b *bB?J of the shell reference surface at the line

*
of attachment of the ring to the shell. (The displacement components u and
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*
w are shown in Figure

transformation has the £

f
where Bo
loads.

shown that

4x4
[E

18.

orm

4x4

(E,

] =

*
The circumferential component v

4x4

LE + ei E, |

4xb

1 0
—enfr (1+e,/r)
0 0

0
L 0
[0 o
enfr eyfr
0 0
0 0

Consistent with Eqs. ( 106) and (. 103) and Figure

0 —eJ
—enfr 0

I e,

0 1
0 ~e;

—eynfr

0 —e,'
0

-

This

( 152)

is the prebuckling meridional rotation associated with the 'fixed'

18, it can be

( 153)

( 154)

* * *
Finally, the vector [g b, v b, w b, B?J must be expressed, with the help of

Egs. (.

,

u

*b
v

*b |

4x7

rt1 {¢°}
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107), in terms of the nodal point degrees of freedom
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in which
[0 2R, O —r 2R, O O
4x7
(1] = 0 0 12 0 0o 12 0 ¢ 136)
0 F2 0 KR, 2 0 0
~12h —12R, 0 0 —I2R, O 1/2h

Using Eqs. ( 148), ( 150), ( 152), and ( 155) and integrating over o,

one can express the nng strain energy expression ( 139) in the form

1x7 7x4 4x4 T 4x4  4x4 4x4
e . _(_LM lﬂ_l[T] E‘ffsﬁ'ﬁz] [Br]T €1 18]

r

( 157)
4x2 2x2 2x 2x4

g7 (5] » ()] 0| e 0

All of the terms in Eq. ( 157) except those involving [Aﬁ;o] contribute

+

to the stiffness matrix [Kl(p(m))]. The terms involving [Aﬁ£o] contribute
to the load-geometric matrix [KZ(Ap(m))]. The contributions of each discrete
ring to the total strain energy of the axisymmetric structure are added to

the local stiffness and load-geometric matrices of the shell finite element

which contains the attachment point of that ring.

Constraint Conditions
The junction conditions ( 104) and boundary conditions ( 105a,b) contribute
only to the stiffness matrix [Kl(p(i))] of the structure as loaded by the

'fixed' loads pim).

. m . ,
The mth constraint condition Uc can be written in the form
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( U“‘ u*" ]
v** v*"
Uz = .25, 45,230 U1 L0 + 10T +BE0E)S o ( 158)
[ B |

in which the superscript "b" has been dropped for convenience, subscript £

refers to the meridional station corresponding to the mth junction between seg-

ments, and [QT] and [Q?] are analogous to the negatives of [_i] and '[Eé]:
[ _1 0 0 4]
[Qm] _ ndz/r —‘(l +d1/r) nd|/r 0 ( 159)
‘ 0 0 -1 —dy|’
0 0 0 -lj
[ o 0 0 dy
—nd,/r —d,/r ndyfr 0O
0 0 0 d, )
0 0 0 0

In. Eqs. ( 159) and ( 160) superscript m has been omitted for convenience

from the arrays. The XT, Ag, A?, and A? are the mth set of Lagrange mul-

tipliers associated with the #%th station at which constraints are imposed on
the quantities u*, v*, w¥ and PB. For example, the constraint conditions
between Segments #1 and #2 in Figure 20 (m = 2,8 = 7) arise from the re-
quirement that the motion during buckling or vibration of point D relative to

point € involves no deformation, onlyrigid body translation and rotation of

m

the ring cross-section., The quantity Al corresponds to compatibility of

axial displacements u*~ and u*t; Ag corresponds to compatibility of cir-

and v*t; A? to compatibility of radial dis-

to compatibility of meridional rotations 8

cumferential displacements v*~

placements w*~ and w**; and Az

and B+.




Displacement boundary conditions applied at the A and B ends of the meridian

(see Figure 20) take the form

u*
m m  m m  m m v*
_ m, m
U, = D, K] [o) +85; )] 1l ( 161)

Corresponding to the end A of the meridian (m=1):

K, 0 0 0
0 Ky 0 0
0 0 Kg O ( .162)
0 0 0 Ku

Corresponding to the end B of the meridian (m=3):

- 163
[K™] 0 ( )

Equations ( 162) and ( 163) are analogous to Eqs. ( 27a,b) in the curved
beam analysis. The quantities KAl’ KAZ’ etc,, and KBl’ KBZ’ etc., are
assigned values, either unity if the corresponding displacement component is
zero or zero if the corresponding force component is zero. The displacement
conditions correspond to a shell which is supported at distances dT and dg

from the reference surface. TFor the shell in Figure 20(a) the KAl’ KAZ’

etc, would all be zero and the KBl’ KBZ’ etc., would all be unity, The

constraint conditions ( 158) and ( 161) can be written in terms of the
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vectors [q+] and [q ] byuseof Eq. ( 155). The compatibility condition

(2.158) can be written as a symmetric quadratic form in the following way:

q
- + )
UI:: = |q¢7,2,q | [F] x+ ( 164)
q
with
_ m.m m .m
Yoo A : ( 165)
(757 7x4  7x7]
(0] [ery (0]
4x7 4x4 4x7
F] = |[eT] [0] (T) .166)
T7x7 Tx4 Tx7
(0] (ry (0]
_ m m '
The boundary conditions ( 161) take a similar form:
(0) [KQTI" (0]} (g~
U? =197, 4q"||[KQT] (0] [0]]¢:4 : (. 168)

(0] 0] [0 (q"

The contributions of the junction conditions ( 164) and boundary conditions
( 168) to the global stiffness matrix of the structures shown in Figure 20
appear in Figure .24, The boundary conditions at A contribute the elements

[KQT]l and [KQT]{; the compatibility conditions for conformity of displace-
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ments and rotation at the junction between Segment #1 and Segment #2 contribute
the elements [QT]Z’ [QT]§, [T], and [T]T; and the boundary conditions at B

contribute the elements [KQT]3 and [KQT]g.
Live Load Effects

The expressions ( 98) and ( 99) for the potential energy of the applied loads
are valid for constant-directional loads. Cohen [ 29] gives the conditions of
conservativeness for a load that rotates with structural deformations, such as
a pressure acting normal to a continuously deforming shell. The potential
energy expression, including pressure-rotation or 'live' load effects, is given

by Cohen [ 29]for a shell of revolution as follows:

1 1 1 2
= - - —
Upz j I [(p1u+P2v+P3w) 7 P (Rl 2) w
s ® ¢ 169)
1 UZ VZ ’
+ p + —-) + uwp ] rdeds
2 '3 (Vﬁl R2 3

The quadratic terms in Eq. ( 169) contribute to the stiffness matrix [Kl(pfm))]
. o £
and to the load-geometric matrix [Kz(Ap(m))]. The contribution to [Kl(P(m))]

arises from

7x3  3x3 3x7

(ror 2m) py [LSIbJ 1T 31 (D] {qb}] ( 170)

and the contribution to [KZ(Ap(m))] arises from



7x3 33 3x7

ﬂ_erz_.%l)_hrk [[_gb_l [D]T [AP] [D] {qb}} ( 171)

in which T, is the radius r evaluated at the midlength of the kth finite

element, [D] is given by Eq. ( 114), and fff] is

— -

f '
3x3
Pt = 0 /R 0 ¢ 172)
3/Ry '
-p! o pla/r, +1/R)
3 3{1/Ry 2

The matrix [AP] is given by Eq. ( 172) with p§ replaced by Ap,.

There is an analogous contribution from the horizontal line load H (Figure
18) acting normal to the deformed centroidal axis of the discrete ring.

The contribution of the line load-rotation effect to [Kl(pég))] arises

from
4x4 4x4 bx4 bx7
Gorm [lﬂ_l - E‘3+BE:[ UE”BE] T ] ¢ 173
in which
0 0 0 0
b4xd4 f
0 -H/r 0 0
) = © . ¢ 174)
0 0 H/r 0
0 0 0 0
L -
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The contribution to [KZ(Ap(m))] arises from the same expressions with H

replaced by M and Hf by AH.

Summary of Bifurcation Buckling Matrices

The eigenvalue problem for bifurcation buckling is expressed in Eq. ( 123),

The contributions of the three energy components Us’ U Up, to the kth

r’
finite element local stiffness matrix [Kl(pﬁm))]k and load-geometric matrix
[KZ(Ap(m))]k can be combined from Eqs. ( .136), ( .157), ( 170), ( 171)

and ( 173). These local finite element matrices, divided by a common fac-

tor, m or 2m (depending on n), are given by

®
T
hr, EI+B£B2:[ [c] Esl+sf)32:[
® ®

+ @l R+ o (F [D]J

]

k
(%) (P ()]

k

(:> <:> ( 175)

T
k Tl = T = T|=f
e, IET] [EpeslE, | (07108, + 30" (W [ n,)

.
+ [ﬁ‘f]] E:‘1+B£E2:[ [f]‘l
J

<+
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—.T — T  —
he, |[R]T [AN] [R] + [D]7 [4P] [D]—J
k S 2 O o (R . B
ey (M7 [EpeE,| (" R 1B 176)

+ [A’ﬁ]] Eﬁl+3£§2:l [T]
3

k
[k, (ap 1y )] )

+

in which k indicates "kth finite element", 6? are Kronecker deltas, and

j indicates a station to which is attached a discrete ring.

Figure 24 shows how the local stiffness [K matrices are assembled or

1!

accumulated into the global stiffness matrix [K for the two-segment

1!
structure shown in Figure 20(a), discretized as indicated in Figure .20(b).

Each of the thirteen 7x7 subarrays [K is centered on the main diagonal

1!

of [K and overlaps its neighbors as shown. The constraint condition

1]
arrays given by Eqs. ( 166) and ( 168) are assembled into [Kl] right
after assembly of the local stiffness matrix corresponding to the station at

k

which the constraint is applied. Assemblage of [K into [KZ] is simi-

5]
lar, the only difference being that there are no contributions from the con-

straint conditions,

Table 2 summarizes where the various terms in Eqs. ( .175) and ( 176)

come from and their physical meanings.
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Computational Strategy for Calculation of Critical Bifurcation Load

The stiffness matrix [Kl], load-geometric matrix [K2], and eigenvalue A

in Eqs. (. 123) depend on the number of circumferential waves n in the buck-
b

ling mode {x }. Hence, the bifurcation buckling eigenvalue problem might

be better posed as
[K, (Pl »m)] =} + A IRy (80 0 um)] (=P} = 0 ¢ 177)

Figure 25 shows a sequence of critical load estimates pcr(n) that might
result, for example, from an analysis of a spherical cap under uniform exter-
nal pressure, such as is depicted in Figure 23, The computer program user

<n n

A

provides a range of n, n which is to be explored during a

min max?

search for the minimum pcr(n). The user also provides as input initial
values for n, pio), and Ap(o). Usually, he will choose n in the middle
of the range noin to N pio) = 0, and Apo = unity. Such a choice yields
eigenvalues Xn which are numerically equal to the bifurcation load pcr(n).
Figure 25 indicates an initial choice of n = 8 and pio) = 10.0. Suppose
that initially Ap(o) = 1.0, The first eigenvalue problem to be posed and

solved is

f

[k, (P (y=10, n=8)] (="} + AglK, (8p y=1, n=8)] ")

= 0 ( .178)

The point on the dashed curve labeled "1" indicates the first computed bifur-

cation buckling load estimate, which is calculated from

£ ~
p (8 = p(o) + AB * Ap(o) & 69 (¢ 179)
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‘From the scale shown in Figure 25 and the initial conditions p§0)= 10.0,

Ap(o) = 1,0, 1t 1is seen that the first eigenvalue X calculated by the

8

program would have been about 59,

With pio) fixed at 10.0 and Ap(o) fixed at 1.0, an eigenvalue is next

calculated for n = 9, The result,

= * ~

pcr(9) 10.0 + 19 1.0 60 ( 180)

is labeled "2" on the dashed curve and corresponds to a smaller eigenvalue

than that for n = 8, Hence, n is further increased by the computer program
. . f

until a minimum pcr(n) is perceived. The loads p(o) and Ap(o) are held

fixed during this phase of the calculations, so that the nonlinear prebuckling

analysis is not repeated for n = 9, 10, 11, or 12,

The program "perceives" that the estimated critical load pcr(ll) is a minimum
in the range of n provided. At this point new values of the 'fixed' load

and load increment are established

£ o f
p(l) = p(o) + A(ll)*Ap(o), ( 181)

f

By = Pqy/1000 ( 182)

The load increment Ap(l) is set very small compared to 'fixed' component
pil) to minimize the difficulty of finding a nonlinaer prebuckling solution
at the load pil) + Ap(l). Also, the small increment added to a relatively

large fixed load yields an accurate approximation of the rate of change of



prebuckling stress resultants in the neighborhood of pil). New prebuckling
solutions are obtained for loads pﬁl) and pil) + Ap(l). A new eigenvalue

problem
[Kl(Pil)’ n=11)] {xb} + All[Kz(Ap(l), n=1l)]{xb} = 0 ( 183)

is set up and solved, leading to the result labeled "6" in Figure 25:

£ (6)

(6) _ ~
oy (1) = Py + AjCp, 28 ( 184)

From Figure 25 it is seen that pgg)(ll) is considerably less than péi)(ll),
so that Aii) must have been negative.

(7)

For the next two critical load estimates, P, and »p

(8)

or ? the number of

circumferential waves n 1is held constant at 11 and new values of pim) and
f
" .
Bp ) established until I Ap(m)l is smaller than Ip(m)/1000|. First,

new nonlinear prebuckling solutions are obtained corresponding to

f

(6) . f
P(2) Por (11); p(z)/IOOO ( 185)

b2y

and a new eigenvalue problem

£ _ b @) _ b _
[Kl(p(Z)’ n=11)] {x } + xll [KZ(AP(Z)’ n=11)] {x } = 0 ( 186)
is solved, leading to the result labeled "7" in Figure 25:
(7 _ f - f @) -
Py (11) = P(3) P(2) + A *Ap(z) ~ 36 ( 187)
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This process is repeated once more before convergence at

(8) _ £ - £ (8)
Por (11) = p(d) = p(3) + All *AP(3) (. 188)

At this point the circumferential wave number is again varied with p€4) =
Pég)(ll) and AP(4) = P§4)/1000 held constant. A new minimum critical load
is perceived at n = 10. Once more the procedure described in connection with
Egs. ( 181) - ( 188) is followed. The final critical load estimate is
piiz) and the corresponding critical circumferential wave number is n = 10.

This 1is the load denoted Py in Figure 23.
Pitfalls

The strategy just described works well if the collapse lead P.g correspond-
ing to axisymmetric snap—through is higher than any of the estimates pim)
and if the eigenvalues Asj) always correspond to the lowest bifurcation
point. The strategy must be modified if the situations dépicted in Figures

26 or 27 exist.

If the program user sets pio) = (0 and Ap(o) equal to a very small fraction
of PnR’ the dashed curve in Figure 25_will correspond closely to a linear
bifurcation buckling analysis. If the minimum péi)(n = 11) corresponds to
Pob in Figure 26, that is, if it is higher than the axisymmetric collapsé
load Poo the program will be unable to determine nonlinear prebuckling

solutions for pil) or pil) + Ap(l).

a1




Note that the result labeled "6" in Figure 25 implies the calculation of a

negative eigenvalue A(6) as discussed immediately following Eq. ( 184). 1If

11 °
the situation shown in Figure 27 exists, conventional subroutines for the
extraction of eigenvalues will yield the second bifurcation point, A(Z)

11’

rather than the first, Ai}), for n =11 circumferential waves.

Modifications of Strategy to Avoid Pitfalls

The pitfalls illustrated in Figures 26 and 27 can almost always be avoided
by the following approach, The program user first selects an initial number
of circumferential waves n, which he feels corresponds to the minimum bi-
furcation load. For this wave number n the stability determinant
I[Kl(pim)’no)]l is calculated for a sequence of load increments bp o,y 28
shown in Figure 28(a). The initial load pio) and load increment are

chosen to be fairly small compared to the expected critical load, say about

pcr/lO.

For each load increment the nonlinear prebuckling equilibrium state is deter-
mined and the stability determinant is calculated for n = n . The load pim)
is increased until one or more eigenvalues are detected between two sequential
load steps [e.g., stability determinant changes sign in Figure 28(a)] or un-

til the maximum allowable user specified load has been reached.

At this point in the calculations a series of eigenvalue problems of the form

%, D1y ] {0} + 2[R, (80 om)] ) = 0 (" 189)



is set up and solved, where

[Kl(pim_l),n)] the stiffness matrix corresponding to n circum-

ferential waves, of the structure as loaded by

f
L1 = Pla-1)
'[KZ(AP(O)’n)] = the load-geometric matrix corresponding to the pre-

stress increment resulting from the load increment

Ly = L) = 8Py

pim—l) = Ll = the load state just before the sign change of the

stability determinant, or the second-to-last load

p(mrl) + Ap(o) = L2 = the load state just after the sign change of the

stability determinant, or the last load

An = the eigenvalue
b .
X = the eigenvector
n = the number of circumferential waves; n lies in a
ange . <n % h and ro-
Tange Dpin = T 2 Dpayo wit “min Tnax P

vided by the program user. Note that the initial

guess n_ also lies in the range n ., <n <n .
(o] min o max

Also note that the increment in n need not be unity,
but may be a suitable fairly small percehtage of the
average of noin and N oax 53 An = 0.05 (nmin +

nmax)'
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From this point on the strategy is the same as already described in connection

with Eqs. ( 178) - ( 188)., 1If Figure 28(b) is used as a reference, the

program next calculates eigenvalues corresponding to Ail), Aéz) . A§3) s
(4) (5) o o+l o-1
A *, and An .
Bo-2 o-3
New prebuckling solutions are then obtained for the loads
f f (4)
= + %
P (art1) P T e T o) ( 190)

f f
and p(m+1) + Ap(l), where Ap(l) = p(m+l)/1000' A series of new eigenvalue
problems of the type in Eq. ( 189) would then beset up with n held constant

at n=n until IAAp(m)| becomes smaller than |p§m)/1000|, as described

crit
earlier in connection with Eqs. ( 187) and ( 188). If some of the eigenvalues
Xéj) corresponding to the problem given in Eq. ( 189) take on negative values,
such as shown in Figure 28(c), the pitfall illustrated in Figure ,27 might

still prevent a finding of the true lowest eigenvalue. The following example

illustrates such a case and presents a remedy,
Example - Buckling of a Very Thin Cylinder Under Axial Compression

This example is included here because it is a difficult case from a numerical
point of view, since eigenvalues are close together and close to the axisym-
metric collapse load, and the case demonstrates some of the internal checks
and automatic internal control in one of the computer programs for buckling
of shells of revolution [ 18]. Because of these properties and because the
geometry is simple, this is a good test case for computer programs that per-

form buckling analysis including nonlinear prebuckling behavior and nonuniform
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prebuckling stress and displacement.

Figure = 29 shows the model of a cylinder with radius R = 500 in., thickness

t =1414in., length L = 2,000 in., Young's modulus E = 107 psi and Poisson's

ratio Vv = 0.3. The cylinder is treated as being symmetric about the midiength,
and the 1,000-inch half-cylinder thus analyzed is divided into two segments:

a 200-inch~long edge zone segment with 83 nodal points, and an 800-inch-long
interior segment with 99 nodal points. The axisymmetric prestress model con-
tains 379 degrees-of-freedom, and the stability model 566 degrees-of-freedom.
Simple support conditions are applied at the edge, and symmetry conditions at
the midlength. Also shown in Figure 29 are the prebuckling displacement dis-

tribution at the predicted critical load of 10,274 1b/in. and the critical

buckling mode corresponding to n = 18 circumferential waves.

Figure 30 shows the sequence of wave numbers and loadé automatiéally explored
by the computer program [ 18] to obtain the final result L6 = Ncr = 10,274
1b/in. With an initial base or 'fixed' load pio) =0 and a 1oadvincrement
Ap(b) = 1.0 1lb/inch,. eigenvalues labeled (1), (2), (3), and (4) are calcu-
lated. The base or 'fixed' load is then set equal to the local minimum or 12,008

1b/in. and the load increment is set equal to 12,008/1,000 1b.in.

In this case, it is discovered from a count of the negative terms on the main
. . . £ _ PR

diagonal of the factored stiffness matrix [Kl(p(l) = 12008, n‘lz)](factored)

that for n = 12 circumferential waves, three eigenvalues exist below the

'fixed' load pil)=12:=12,0081b/in. Hence the'load is automatically reduced

by a factor of 0.7, to L, = 8,414 1b/in. After the eigenvalues correspodding to

3

points 5, 6, 7 and 8 and 9 in Figure 30 have been determined, the new base
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load piz) = L3 = 10,819 1b/in. is established corresponding to n = 18

waves, It is also determined that at n = 18 one eigenvalue exists below

this new 'fixed' or base load. However, the new base load need not be reduced
by some factor because initial inverse power iterations for the eigenvalue
nearest to L3 = 10,819 indicate that subsequent critical load estimates will
further reduce the base loads LA’ L5, etc., to the lowest eigenvalue rather
than increase them toward the secoﬁd eigenvalue, Had the opposite trend de-
veloped, the program would have caused the base load to be reduced to 0.9%10,819.

Figure 30 shows the final three load estimates, L4, Ls, and L6'

Figure 31 gives the prebuckling load deflection curve for this cylinder.
The abscissa represents the difference between the actual end shortening and the
linear end shortening that would exist if there were no prebuckling rotation.
Eigenvalues computed with Ap = 1.0 and pim)==NO=(),5000,10000§11000,11500,
and 11900 1lbs/in. and n = 18 circumferential waves are indicated as crosses,
Several runs were made in order to obtain these results, each run correspond-
ing to a different 'fixed' load pf = No' The open circles in the load-end
shortening curve correspond to the various loads, No = 5000, 10000, ... 11900.
The large dots represent the 'fixed' loads used in the sequence shown in Figure

30. Two to four eigenvalues are calculated corresponding to each open-
circle fixed load. These eigenvalues are indicated by crosses on the same
vertical lines as the open circles. The eigenvectors are shown in Figure

32, Notice that for 'fixed' load Ll = pﬁo) = 0, the lowest four eigen-
values are very close and are all aﬁproximately equal to the 'classical' load
0.605 Etz/R. The lowest eigenvalues are also close for n = 15, the start-
ing circumferential wave number in the search for the minimum critical load

- ] r . .
p(cr)(n ncrit) Therefore, several inverse power iterations and spectral
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shifts are required to obtain the lowest eigenvalue at that wave number. TFor
No = 5,000 1b/in. the lowest eigenvalue 'separates' from the others, and the
localized nature of the corresponding eigenvector is strongly developed (Fig-
ure 32). Because of this separation of the lowest eigenvalue, fewer inverse
power iterations and spectral shifts are required for convergence. Thus, the
user may save computer time by choosing a base or 'fixed' load to be some
reasonable percentage of the estimated final buckling load., This is partic~
ularly true if many values of the wave number n are to be explored and if
the predicted n corresponding to the minimum pcr(n) is likely to depend
strongly on the fixed portion of the load, as is the case for axially com-

pressed very thin cylinders.
Another Pitfall -~ Failure to Find the Global Minimum pcr(n)

In all of the examples shown in Figures 25, 28, and 30 the curve of
critical load or eigenvalue vs. circumferential wave number n has a single
minimum and corresponding Doit? given p%m). However, the curve of pcr(n)
vs. n for optimally designed stiffened shell structures often has several
minima, all of them at approximately the same load, as shown in Figure 33,
This is because the minimum weight design often yields a configuration in
which general and local instability occur at almost the same load., In Figure
33 the general instability mode and local modes corresponding to primary
failure in the first, second, and third bays of the conical shell are shown
as insets in a plot of pcr(n) vs. n. In addition the rings might cripple
at still higher values of n. It is generally up to the computer program
user to provide a wide enough range of n or to make several runs with dif-

ferent ranges of n 1in order to cover all possible failure modes.
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Physical intuition 1is invaluable as a guide for finding the absolute minimum
load. One may idealize each bay of a ring stiffened shell by assuming that
the bay 1s simply supported, calculate corresponding '"panel" buckling loads
with certain appropriate ranges of n, and then use the critical loads and

values of n as starting points in an investigation of the assembled structure.

It is not necessary always to increase the circumferential wave number n by
one. In the search for the minimum buckling load, for example, one may only
be certain that the n corresponding to the minimum buckling load, L
lies in the range 2 < n < 100. Onemight, therefore, choose An = 10 and

"zero in" on a more accurate value in a subsequent run.

Experimental evidence is of course very useful in determining a good choice
of initial number of circumferential waves n and range limits noin and
n . If none is available the user is advised to try the following formulas:

max

(1) "Square" buckles for short cylindrical or conical shells or

panel buckling

n = qr/L, where L is the shell meridional arc length

corresponding to the half-wavelength

(2) For monocoque deep shells, axial compression:

n proportional to [(Nominal circumferential rad, of curve)/t]l/2
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(3) For shallow. spherical caps supported rigidly at their edges;

external pressure:

%,
n = 1.8 *az* (R/t)l/2 -5 (a2 = angle in radians from the

axis of revolution to the edge)

(4) For axially compressed conical shells and frustrums:

Use formula 2 where the circumferential radius of curvature, R,

is the average of the radii at the ends.

(5) Spherical segments of any depth under axial tension

1/2 1/2

n = 1,8% (R/t) sin[oz1 + 4.2 (t/R) ]

where ay and a, are the meridional angles measured from the .

axis of revolution to the segment beginning and end, respectively

'(al < az).

The above list of formulas is by no means complete., However, notice that

1/2 is a significant parameter, If n is known for a shell of a given

(R/t)
geometry loaded in a certain way, a new value can be predicted for a new R/t

/2

through the knowledge that n often seems to vary as (R/t) (R is the

normal circumferential radius of curvature.)
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Modal Vibration Analysis for Prestressed Shells

For modal -vibration analysis the stiffness matrix [Kl(pf,n)] of the shell
as loaded by pf is the same as that appearing in the eigenvalue problem

for bifurcation buckling, The eigenvalue problem for modal vibration analy-

sis is
K, GLo1 {2} + I °} = o ¢ 191)

in which [M(n)] is the global mass matrix corresponding to n circumferen-

tial waves.

Starting from Eq. ( 100) for the shell and Eq. ( 101) for the discrete ring,

and assuming that the displacmeent as a function of time is
b
{x} = {x } eiQt ( 192)

one can derive the local mass matrix for the kth finite element:

7x3  3x3 3x7
k _ T
po* = e |01 1) (0]
k
bxt 3x3
+ ¢ AT |E +Bff T[T 1[E,+6°E, | [T] + [R1"[T,][R] ( 193)
1%¢3%; 17BoEy | LTpL [E1FBLE) gll ;
in which m is the shell wall mass/area, [I] is the identity matrix, P is

the jth ring material mass density, A 1s the discrete ring cross section area,

and
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- .
1 0 0 0
0 1 0 0
T = ( 194)
A 0 0 1 0
0 0 O Ik/Ak
| P ]
0 o o |
T, = 0 I -I : o ( 195)
0 -I_ I
L .

The matrices [D], [E], [Ei+8§§é], and [ﬁ] are the same as those used in

k

the derivation of [K and [Kz]k, appearing in Eqs. ( 175) and ( .176).

1)

The IS, Isn’ In are components of the moment of inertia of the discrete ring

with respect to the (s,n) axis system, which is shown in Figure 20(a).
Linear Stress Analysis

Arbitrary loads p(s,9), acting on the shell reference surface and L(6),

acting along discrete ring centroidal axes, are decomposed into Fourier har-
monics, as listed in Eqs. ( 112), For each Fourier harmonic, the stiffness
matrix [Kl(pf=0,n)] and '"right-hand~side'" vector .{F(n)} are formed. A

solution {x(n)} to the linear system
£ : ,
(K, (p =0,m)] {x(m)} = {F(n)} ( 196)

is obtained and added to solutions obtained for previous values of n. The

stiffness matrix [K is the same as that used in the buckling and vibra-

1!
tion analyses with the 'fixed' load pfm) now set equal to zero. The right-
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hand-side vector F(n) is formed from assembly or accumulation of the local
right-hand-side vectors for each finite element into the global vector. The
local vectors are generated from the first variation of the total energy eval-
uvated for the undeformed structure. Contributions to these local vectors
arise from the second term in the integrand in Eq. ( 89) (thermal loads in the
shell), the last three terms in Eq. ( 95) (thermal loads in the discrete rings),
and all of the terms in Eq. ( 98) (line loads on the discrete ring centroidal
axes) and Eq. ( 99) (distributed loads on the shell reference surface). The
total shell and ring energy components corresponding to these linear terms in

q are:

( 197)

. 1 T 1 L
Ushell(linear in q) = -z—fs fezl_y_l{e( )}rdeds - j’s fe(plu+p2v+p3w)rdeds

Uring(linear in q) = %- Zlﬁf_l{eil)}rcde - 'g(—VuC+SvC+ch+MB)rcde ( 198)

in which [y?l is defined in Eqs. ( 84) and ( 86); {e(l)} is defined in

Eq. ( 128) (Remember Bi = 0 in this analysis); [ﬁi_{ is defined in Eqs. ( 143)
and ( -96); and {eﬁl)} is defined in Eq. ( 140). Using principles and équa—
tions introduced in the discussions and derivations leading to Eqs. ( 136) and

( 157), one can express Eqs. ( 197) and ( 198) in the forms

Ushell(linear in q) = (m or 2w) hrk [}§?J[Bl] - L}LJ[Dlj {q} ( .199)

Uy g (Linear in q) = (= or 2m rCL@a[Br][El][T] - lr] [gl]['T]J{q} ( 200)

in which the transformations involving [Bl]’ {p], [Br]’ [Ei], and [E]
appear in Eqs. ( 134), ( 113), ( 148), ( 152), and ( 155), respectively,

and
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H

L]

lpys Pys Pyl
(. 201)

H

L] [-v. s, H, y
Corresponding to the kth finite element, the local force vector, divided by
the common factor 7 or 27 (depending on n), is given by the negatives of

the right-hand-sides of Eqs. ( .199) and ( 200) without the {q}:

O, @
{F}k = -hr L}F?J[Bll - LpJ[D{Jk

® ® ( 202)
_slj‘rcj L@J:_[[Br][ﬁl][f] - |1l [, 10T lj |

The local "right-hand-side" or force vectors {F}k are assembled into the

global force vector {F} as described in the discussion following Eqs. ( 175)

and ( 176) regarding the local stiffness and load-geometric matrices. Table
.3 1lists the equations that give rise to the various terms in Eq. ( 202) and

identifies the physical significance of these terms.
Various Discretization Methods

In the preceding development the discretizations shown in Figures 11 and
21 have been given the appellation "Finite-Difference Energy method". How-
ever, as emphasized in Ref, [ 19], the categorization of discretization
methods into "Finite Element" and "Finite-Difference Energy" is somewhat
artificial. In both the finite-element and finite-difference energy methods
* the unknowns of the problem are certain generalized displacement components
located at discrete nodes in the domain, Between these nodes the variations

of the generalized displacements are expressed as power series in s. Inte-
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gration can then be performed analytically or numerically. The differing
choice of generalized displacement components and locations of the nodes are
the only characteristics of the two solution techniques which justify giving
them different names. Once the nodes and the appropriate generalized displace-

ment components have been selected, the solution procedure is identical for

both methods.

Figure 34 shows five types of discretization. The nodes are denoted by
large dots or crosses. The "element" is defined as the solid horizontal line
bounded by dots or crosses. Nodal point variables Uiy Vg, W, By, etC.,
are shown next to the nodes with which they are associated. The first three
models fall into the category "finite element method'", the last two into the

category "finite difference method".

The three models (:), (:), and (:) represent standard finite elements such
as described in Kotanchik et al., [ 30], Mebane and Stricklin[ 31], and Adelman
et al. [ 32]. A curved element (:) with extra internal degrees of freedom
(dof) Gl’ ;l’ GZ’ and 52 permits rigid body motion without excessive
storage of energy. The internal degrees of freedom represent corrections to
the linear function. Elements of this type are described in [ 31]. An
alternate way of obtaining higher-order displacement functions is to define
more degress of freedom at the nodes [ 32], Element (:) is of this type.
The displacements within each of these elements are given by the polynomials
shown in the figure. Integration of the energy functional can be performed
analytically or numerically. Gaussian quadrature seems to be the most accu-

rate and economical method of integration.
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Figure 35 shows schematically a structure consisting of five elements. The
displacement function w and its first derivative are continuous throughout
the domain. The displacement function for u and v corresponds to model
(:). 0f course, the elements need not be flat. However, if the element is
curved, higher-order displacement functions than linear in u and v are re-

quired for representation of rigid body motions.

Model (:) represents the discretization method described here in previous
sections. As has already been mentioned, in this finite-dif ference energy dis-
cretization, the integrand of the energy functional H [Eq. ( 1)] is eval-
uated at only one point within each element, and the total element energy is
obtained by multiplication of the energy per meridional arc length by the
element length &. The finite-difference formulas for variable mesh spacing,
given in Eqs. ( 110) and ( 111), are obtained by Taylor éeries eipansions of.
the displacements about the centroid of each element. Since first and second
derivatives of w and only first derivatives of u and v occur in tﬁe
integrand of Eq. ( 1), the appropriate polynomials for the lowést—order dif-
ference formulas in each case are shown in Figure 34(d) and (e). As in the
case of the finite-element method, the o, can easily be expressed in terms

. of the nodal point variables. The finite-difference energy discretization
model (:) has been used in computer programs by Stein [ ,33], Bushnell [ 18],

-and Brogan and Almroth [ 22},

Figure 36 shows the finite-difference discretization of the same five-element
structure depicted in Figure 35. In Figure 36 the element boundaries are
at u and v nodal points (crosses). The quadratic w  expansions pass

through three adjacent w nodes, spanning a longer arc length than the
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element. However, the integration, or "lumping" corresponds only to the lengths
between adjacent crosses. The in-plane displacements u and Vv are continuous
everywhere. Notice that at element boundaries the normal displacements and
derivatives are discontinuous. It can be shown that the displacement discon-

tinuity Awi is of maximum order

h h
_ d7i+l
|owy | = —— (h;_; +2h; +2h .+ by 4o) ( 203)
and the slope discontinuity is of maximum order
h.-h
i i+l
|28, | ) ) (hy y + 20y +2hy ., +hy0) ¢ 204)

The finite-difference discretizations (:) and (:) are similar to replacement
of the actual structure by a structure consisting of elements linked as shown
in Figure 37. The normal displacement w 1is continuous at the pinned joints
and u and v are continuous at the stations where the projections stick into

the rounded holes,

At first glance it would seem that this structure is far too flexible to repre-
sent the behavior of a continuous shell. However, notice in Figure 36 that

u and v must be continuous at the stations where w is discontinuous.

Since the circumferential strain, for example, involves at least both w and
v, the Aw at the element boundaries must remain small enough to keep this
membrane strain component, and hence the energy, at a reasonable level, 1In
other words, the minimum energy state will involve small discontinuities in

w at the element boundaries,
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In Figure 22 are given the computer times required to form the global stiff-

ness matrix [Kl] corresponding to the problem shown in Figures 1 and 2,

The curve labeled "Finite Element Analysis'" corresponds to Model(Z) in Figure
34, As seen from Figure 2, a high order element of this type (cubic in

u and v) 1s required for convergence to a reasonably accurate answer with a

reasonable number of elements.

Figure 38 illustrates why the computer time for the formation of [Kl] is

much higher for Model (:) than for Models (:) or (:):

(1) There is an extra loop over the number of Gaussian integration

points per element.

(2) There is more algebra required for formation of the kinematic
matrix B and more products required in the formation of

BTCB (B has more columns).

(3) An extra step is required outside of the Gaussian integration
loop in order to condense out the internal degrees of freedom

in each element.

In spite of the higher order of the finite element (:), the convergence of
edge displacement w with increasing nodal point density is far more rapid
with the finite difference element (:). For an accuracy of 2,07 in w about
20 finite difference elements would be required, with about 0.25 second needed
to form the global stiffness matrix [Kl]' For the same accuracy, about 60

finite elements of the type (:) would be required, with about 3.5 seconds
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needed to form [Kl]. The difference in the rate of convergence for the two

discretization methods probably results fromthe following:

(1) The lower order (stiffer) approximation for wu, v, and w in
the finite difference element is compensated by discontinuities

in w and f# at finite difference element boundaries.

(2) The fact that the curved finite difference element energy is
evaluated at only one station per element results in a more
energy-free representation of rigid body motion than of the
curved finite element with cubic u, v, and w, in which
the energy is evaluated at more than one Gaussian integration

point.

Constitutive Law [C] for Composite Shell Walls

Here the phrase "composite shell wall" is taken in a breoad sense., It may
mean laminated as described by Jones and Ashton et al. in Ref. [ 6- 8]. It

may also mean a shell wall modified by stiffeners that are to be smeared out

in the computerized model.

Equations ( 80) and ( 84) are based on an assumption that the principal
axes of orthotropy of the shell wall material are aligned with the orthogonal
coordinate lines on the shell reference surface. Thus, they are valid for

a stringer and ring stiffened shell wall such as shown in Figure 39, in
which the stringers follow meridians (s-coordinate) and the rings follow

parallel circles (6~coordinate). If the analyst wishes to set up a model in
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which both sets of stiffeners are smeared or averaged over the entire surface,
he can treat the shell wall as if it consisted of four orthotropic layers with
properties G, El’ EZ’ Vigs My Gy and ay assigned as listed in Figure 39,
If the stiffeners do not follow coordinate lines, the more general model de~-

scribed in Ref. [ 6] is required.

On page 154 of Ref. [ 6] Jones write the equivalent of

o ~ :
Ny r—All Ay B, Bir By B °1
N, Ay Ay Ay, By Byy By )

[M2 | o fae s Mo s o s || |
M By By Brg, Pn Py Dig K1
M Bla By Byg, D1y Dyy Dy <)

M2 LBl6 By Bes . P16 D26 Des \ 2Ky J

C ) |

in which the stress and moment resultants are defined as in Figure 17 and the

reference surface strains and changes in curvature are defined as in Eqs, ( 90).

The Aij’ Bij’ and Di in Eq. ( 205) are, of course, equivalent to the

3

corresponding Cij in Eq. ( 84). TFor the laminate Jones gives

N
Aij = kzl (Qij)k (z, - 2z, 1)
N
_ 1 — 2 2
Byy = 2kzl Q) (2 - 2y (206
N
_ 1 — 33
Piy = ’3‘k§1 Qi (e~ 2y)
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in which the z, are measured from an arbitrary reference surface, as shown
in Figure 40. (Jonmes [ 6] uses the middle surface, but this is not a

necessary restriction.) The aij for each lamina are given by Jones on

page 51 of Ref. [ 6]:

— _ 4 22 4
Q11 = Ellc + 2(E12 + 2G)s " + EZZS
— _ 22 4 4
le = (Ell + E22 - 4G)s"c” + G(s + c)
— _ 4 2 2 4
Q22 = Ells + 2(E12 + 2G)s"c” + E22c
( 207)
— - 3 3
Q16 (Ell - E12 - 2G)sc” + (E12 - E22 + 2G)s"c
Q = (E,, ~E., - 2G)s3c + (E,, - E.., + 2G)sc3
26 11 12 12 22
3 - _ _ 2 2 4, 4
Qg = (E11 +E,y, 2E12 2G)s“c” + G(s + )
in which Ell’ E12’ E22 are defined in Eqs. ( 81),
s = siny c = cosy ( 208)

and vy 1is the angle from the meridional direction to the "1" axis of the

lamina (direction in which El is measured).

Note that use of the full matrix in Eq. ( 205) in the analysis of shells of

revolution would prevent the separation of variables according to Eqs. ( 108).
Hence, in most one-dimensionally discretized analyses of stress, buckling, and
vibration of composite, laminated shells of revolution, the Cij in Eq. (  84)

are derived as in Eqs. ( 205) - ( 208) and the terms A16’ A26’ Bl6’ B26’

D are subsequently ignored.

Dig> Dy
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Section 4

HYBRID BODIES OF REVOLUTION

Introduction

By "hybrid" is meant a body of revolution with both one-dimensionally and
two-dimensionally discretized regions, such as shown in Figure .41 ., The
stresses and strains for distances equal approximately to one wall thickness
from the junction shown in Figure 41 cannot adequately be predicted with
thin shell theory. Therefore, a small region is defined in which the domain
is discretized in two dimensions., Figure 42 shows other examples in which
such a hybrid model might be used for accurate prediction of local stfesées

and strains near structural junctions.

The existence of a special-purpose hybrid body-of-revolution computer pro-
gram for stress, buckling and vibration analysis is justified because there
exist many practical problems in which the geometry is axisymmetric or essen-

tially so.

The user of such a computer program can obtain solutions involving fairly
complex configurations with reasonable computer times. A hybrid program of
this type should be used primarily for cases in which most of the structure
can be modeled with use of‘thin shell elements, only very localized areas

being modeled with use of two-dimensional solids of revolution. If the
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two—-dimensional finite elements are introduced sparingly, the bandwidths of the
stiffness, mass and load-geometric matrices are generally narrow. Such matrices
can be stored very compactly with a minimum amount of indexing. Thus, the com-
puter time to decompose the stiffness matrix is small, and input from and output
to auxiliary mass storage devices is kept to a minimum. Since most of the struc-
ture is modeled with very simple thin shell elements, the program user is able

to simulate the behavior of an entire complex structure in one model while re-

taining reasonable nodal point density and two-dimensional discretization in

critical areas.

There are in existence several general purpose computer programs [ 24] which
can yield solutions to problems of the type just described. 1In fact, the idea
of analyzing hybrid bodies of revolution, consisting of thin and thick segments
is not new. Strickland et al. [ 36] created a computer program, WASP, for the
axisymmetric linear static analysis of such bodies. Zudans and Chow [ 37]
wrote a hybrid program, BOXSHL, which permits nonsymmetric linear treatment by

means of Fourier Series expansion in the circumferential direction.

Many authors have written computer codes which can handle solids of revolution
by means of axisymmetric finite elements. Displacement functions and integra-
tion schemes in these elements can be modified such that they are adequate for
the analysis of thin shells. Thus, Wilson [ 16] introduces incompatible modes
in order to create correct bending behavior, Ergatoudis et al.[ 381 derives
higher order isoparametric solid elements with one or two midside nodes, and
Ahmad et al, [ 39] and Pawsey [ 40] specialize these isoparametric elements
by taking advantage of certain characteristics of the behavior of thin shells.

Isoparametric solid elements are also used fof shell analysis by Larsen and
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Popov [ 41], by Bathe et al. [ 42] in NONSAP, by Dunham and Becker [ 43]
in TEXGAP and by Sharifi [ 44] in NEPSAP. Ferguson [ 45] extended the capa-
bilities of FARSS [ 46] to handle stress, buckling and vibration of thin and

thick shells and bodies.

These and other investigators favor using solid isoparametric two-dimensional
or three-dimensional finite elements for large deflection analysis of shells
because the kinematic relationsare well known and the rigid body behavior is
represented exactly. Other work on thick shells or solids in conjunction with

thin shells is presented in [ 47] - [ 50].
Choice of Finite Element for the Two-Dimensional Regions

The guiding principle in the selection of an appropriate element for analysis
of the two-dimensionally discretized '"solid" or "thick shell" regions is that
the element should be capable of reproducing thin shell pehavior as well as
general three-dimensional behavior. If this were not the case, large spurious
stresses and artificial constraints would be introduced at every junction be-
tween "thick" (two-dimensionally discretized) and "thin" (one-dimensionally

discretized) regions.

The pressurized flat ciruclar plate (Figure 43) is a good example to use
in a discussion of what properties a "solid" element must have in order to
lead to accurate predictions of '"thin shell™ behavior. Suppose that the
plate shown in Figure . 43 is loaded well into the plastic range. Then at
the axis of revolution, for example, the topmost fibers are compressed and

the bottom-most fibers are stretched plastically. Since the plastic flow is
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assumed to be associated with zero volume change, the axial strain (normal to
the surface) must be extensional at the topmost fiber and compressive at the
bottom-most. The simplest assumption is that the axial strain varies linearly

through the plate thickness. It follows that the axial displacement must vary

quadratically through the plate thickness. Thus, at least three nodes are

required through the plate thickness if the nodal point unknowns are the dis-
placement components. If only two nodes are used through the plate thickness,
the axial strain can only be constant., Suchagross simplification leads to
the prediction of very large stresses normal to the surface of the plate at
its extreme fibers, a result that naturally generates serious errors, especi-

ally in analyses in which plasticity or creep are included.

It is easy to see that at least three nodes are required in the radial direction
in each element in order that bending be possible. Wilson's [ 16] incompatible
element permits bending but still suffers from the insufficiency just discussed

relative to normal stress and strains.

The requirement of at least three nodes in each direction immediately suggests
use of an isoparametric 8-node element. Such elements were first introduced

by Irons in 1966 [ 51] and subsequently popularized by Zienkiewicz [ 52].
These elements can, as seen from the results listed in Table 4, reproduce thin
shell behavior, If the programming is done in double precision, the "aspect
ratio" is essentially unlimited., In another analysis of a flat plate, use of
elements with a radial length-to-thickness ratio of 1000 still led to good pre-

diction of the deformed state.
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Basic Equations

In this section the possibility of plastic flow and creep will be allowed.
Therefore, the equations governing equilibrium and bifurcation buckling will
be derived from the principle of virtual work, rather than from minimization
of the total potential energy as was dome in the previous sections on the

analysis of elastic curved beams and thin shells,

Principle of Virtual Work

The first variation of a total energy functional H [analvogous to H for

the beam in Eq. (12)] 1is

8H = Lol {68} dv (strain energy)
Volume
- mu * 54 dVv (kinetic energy)
Volume
- f Fb © Su dV (body forces)
Volume
- f Fs « 8u dA (surface tractions)
Area
- Es' . sLf(@]aA ("following" pressure) ( 209)
Area
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- f FL . Su rLde (1ine loads) ( 209
. cont'd)

m (nc m n
+ L &, a + c
=1 Pt AR T o) BT Ay L

(constraint conditions)

(equilibrium condition)

Strains are considered to be small but rotations may be moderately large. The
material i1s elastic-plastic and primary or secondary creep are included in the
analytical model. The strain components L;J. are nonlinear functions of the dis-
placements u. The displacements u anywhere in each finite element can be ex-

pressed in terms of nodal point values q.
- 8
vo=E By | ( 210)

In Eq. ( 210) u represents a displacement vector and ai represents the

value of u at the ith node of a finite element. For example, in Figure
44(b) u has the components Uy, Ug, Uy = dygs Gyos Gyge

The variation &H is therefore given by

oH ( 211)
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Since &q 41s arbitrary, the equilibrium condition is

H-—e’

1
%
———
[san

Q
| E—

TR P i .t
qu b qu

( 212)

m Blz nc
+ Z p—— Z a + a

g1 9% \jke1 Mk T 2y

n

m c d
+ I Ai = L 325 =0

2=1 k=1 q

Because the strains | e | are nonlinear functions of the nodal point displace-
ments ¢, Eq. ( 212) represents a simultaneous set of nonlinear equations.
These equations must be solved incrementally because the material is elastic~
plastic creeping and hence its state is path-dependent. In addition to pro-
viding for an incremental procedure, one must provide for some kind of itera-
tive or self-correcting technique at each load or time increment in order to

prevent drifting from the correct solution path.

Appropriate Use of the Newton-Raphson Method with Path-Dependent Material
Properties

Suppose that for some known starting vector q, of dimension N, we have
[

wi(qo) # 0. We wish to determine Aq such that wi(q0 + Agq) = 0, A system
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of equations for the unknowns Aq can be generated by expansion of wi about
9, in a Taylor series., 1If only the linear terms in Aq are retained in

this expansion, one obtains the following linear simultaneous equations:

N BY&
.21 So- gy = - Y i=1,2,3 ...N ( .213)
j= j

These equations are solved for Aqi and a new estimate of the solution q; =
q, + Aq becomes available, Iterations continue until q 1is smaller than a
certain prescribed percentage of q. This is called the Newton-Raphson method.
The short description above is a reiteration of the discussion associated with

Eq. ( 56) for the nonlinear analysis of the elastic curved beam.

A certain refinement in the solution strategy is required if large deflection
effects and elastic-plastic material behavior are simultaneously present. The
Newton-Raphson method can be used only if ¢1 can be expanded in a Taylor ser-
ies about the known origins q, or qy or gq,, etc. The Taylor series ex-
pansion exists if and only if the gradient 23¢/3q exists. In problems involv-
ing material which loads plastically but unloads'elastically along a different
path in stress-strain space, the existence of a unique 23y/3q depends on the
use of a proper strategy for taking into account both geometric and material
nonlinearity. One strategy is to establish a double iteration loop for each
load or time increment: the tangent stiffness coefficients and plastic and
creep strains are updated in the outer loop and the geometric nonlinearities
are handled by the Newton-Raphson method in the inner loop. In the Newton-
Raphson loop the tangent stiffness is not recomputed with each new estimate

of the displacement vector ¢q. While calculations are procegding in this

inner loop, it is as if the material were elastic, loading and unloading along
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the same path in stress-strain space. Therefore, a unique value of 23y/3q
exists and the Newton-Raphson procedure is valid. It is important té be
assured of this validity because the Newton method has certain favorable con-
vergence properties which are well understood. If one is attempting to pre-
dict loads at which a structure collapses, it is important to know that failure
of convergence of the iterations indicates failure of the structure and not

simply failure of the algorithm to predict the behavior of the structure.

Details on various solution methods for nonlinear structural analysis, in-
cluding methods for reliable prediction of collapse loads are given in Ref.
[ 26]. More information is also given there on the double iteration loop
and on themethod used to update elastic-plastic material properties in the

outer loop of the computational process.
Calculation of awi/qu

The stiffness matrix for each Newton-Raphson iteration is 9y/3q, and the

(1,j)th element of this matrix is awi/qu. From Eq.( 212), we can write:

R S, (o) il - -5 &) -
4 v oq; 99y 9q; 1 | 9q; 0q;  9q;
_ f 50 . 22LE@)
s 0q.9q.
A J
TR
£ a
g=1 %4 k=1 *k 9g

e




Note that we have assumed by use of Eq. ( 210) that the displacements u
anywhere in the structure are linear functions of the nodal point displace-
ments, q. This may be a questionable model for discrete rings attached to
areas on the shell which undergo moderately large rotations. The displace-
ments anywhere in the cross section of a discrete ring are expressed in
terms of nodal points on the shell reference surface in the neighborhood of
the attachment point of the ring to the shell. Since the cross section of
the discrete ring is assumed to remain undeformed in "classical" ring theory,
the displacements anywhere in that cross section involve sines and cosines
of angles of rotation of the shell wall. If these angles are relatively
large, retention of only the linear terms in the series expansions for their
sines and cosines may not be very accurate. Hence, for the discrete ring
analysis, the displacements i are considered for certain analysis branches
to be nonlinear functions of q. [For example, see Eqs. ( 106) and related

discussion],.

Equilibrium

Equilibrium is determined by iterative solution of Eqs. ( 213), with Eq.

( 214) used on the left-hand side and Eq. ( 212) on the right-hand side.
For statics problems u = 0 and thus the last term on the first-line of Eq.
( 214) drops out.

Bifurcation Buckling and Eigenvibrations

The following discussion is a review of that associated with Eq. ( 60) for

the buckling of the beam. The calculation of bifurcation buckling loads and



of modal vibration frequencies can be posed as a problem of determination of
the values of a parameter for which the equilibrium solution is not unique.
In bifurcation buckling problems the parameter is a load parameter, and in

modal vibration problems it is a frequency.
1f 4, represents a solution of the equilibrium equations
b,(q)) = 0 o 215)
Then we need to know if
v (q, + ) = o0 ( 216)
in which qb is a non-trivial bifurcation buckling mode or vibration mode of

infinitesimal amplitude. Following the Newton-Raphson iteration strategy, we

can write

o/

Mooy b
Eom| 09 7 onlg) =0

j=1  ?q
g, ( 217)

i=1,2,3 ... M

Equations ( 217) are linear and homogeneous, A non-trivial solution qb
exists only for certain discrete values of some parameter contained in the
matrix a¢/8qb. These eigenvalues are the bifurcation buckling loads or

modal vibration frequencies.
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Variation of Displacements in the Circumferential Direction

In nonlinear problems the loading and the structural response are assumed to
be axisymmetric. In cases involving bifurcation buckling or modal vibrationms,
the eigenvectors vary harmonically around the circumference with only one

harmonic participating in each mode. Thus, the modal displacements are

denoted Gb,

ulb uf(n) sin n o
-\Ib = u; = u;(n) cos n 6 ( 218)
u;) u;)(n) sin n o

where u]]:_, Uy, ug are the axial, circumferential and radial displacement com-

ponents, respectively. In linear nonsymmetric stress problems, the displace-

ment field uy, Uy, Uy can be written as infinite series

~ _(n) -
_ n) . -
u‘.l = Z u1 sinné + Z ul( n) cosn®b
n=1 n=o
~ (n) 2
u, = Y uw,cosnoe + Y u (-n) sin|n| e ¢ 219)
- 2 2
n<=o n=-1 .

ug = 3, u;n)sinne + 3 o {0 cos n ©
p- 3
n=1 n=o

These equations are analogous to Eqs, ( 108) for the thin shell analysis.
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Displacement Components Used for Shells, Rings, Solids

In the analysis of the thin shell segments, U, Uy, ug are written in terms
of u, v, w the meridional, circumferential and normal displacement compon-

ents of the shell reference surface. These components are shown in Figuré b4 (a),

In the analysis of a discrete ring thé displacements anywhere in the ring
cross section are ultimately expressed in terms of the displacements u, v, w
of the point on the shell reference surface to which the ring is considered to
be attached [see Eqs., ( .106), ( 107)]}. Further details on the elastic-

plastic discrete ring analysis are given in Ref. [ 26].

In the analysis of solids of revolution u;, Uy, u; are the dependent varia-

bles, These are shown in Figure 44(b).
Strain Energy
General Equations

The strain energy gradient is given by the first term in the integrand on the

right-hand side of Eq. ( 212):

AU 1x6 ;:1 | |
gq*-; = fv lel - {5-51—} dav | ( 220)
where
6x6
Lol = [e-¢P - =€t - D] ( 221)
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in which ep, ec, sT are the plastic, creep, and thermal strains, respect-

ively, and [D] is the constitutive matrix given later.

The first two terms in the integrand on the right-hand side of Eq. ( 214) can
thus be written

2 , . ) 2
"0 _ _p_c T 3%
S-Tqi Y = jv ([c e _Se| [D] {—T—aqi qj}

( 222)

' '5?;8" fe-¢" - -&7) (D] {%i—})

Tty

In the discussion about the Newton-Raphson method, it was emphasized that with-
in the inner iterative loop the material tangent stiffness is held constant.
Since the solution corresponds to an instant in time, the creep strains Lgil

and the thermal strains LETJ are also held constant. The plastic strains

LE?J can be expressed in the form

[P] = LI+ Le - e 1 Lc] ( 223)

in which [C:] is the transpose of a matrix which will be derived later,

The subscript ( )o in Eq. ( 223) denotes 'value obtained when the material
properties were last updated"., These values are held constant throughout the
Newton-Raphson iterations. The total strain L;_[ changes, of course, with
each Newton-Raphson iteration., With use of Eq. ( 223) in Eq. ( 222), and
recognition that ngj, Lgij and Lg?l are independent of q in the Newton-

Raphson loop, we can write Eq. ( 222) in the form:
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i’ v j i

( 224)

2

+ . PT T 07e

[eo Co € - ¢ e | [D] §B'q'1'57( )dV
J
where [DTo] is a matrix which can be shown to be symmetric,
[Dy,] = [I-C.] - [D] ( 225)
To" =~ o

The expression ( ,223) is also used in Eq. (. 221) and Eq. ( 220) so that’
U J’ 3¢ T » ¢ _T 3¢e

g (LtJ (D ] {B'q:}*' [s:Co -5 - € - ‘|7 {E})dv ¢ 226)
Derivation of Cz

This derivation follows Stricklin et al [ 53]. The change in stress at an

instant of time for a given temperature is
{do} = [p] {de - P} ( 227)

The stress and strain components are

ldg| Lgol, do,, dog, doj,, do,, d0231
( 228)

lde] dey, dey, deg, degy, deyy, deyq |
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The changes in plastic straln components {dep}, are related to the change in

effective plastic strain by the flow law associated with the von Mises yield

criterion:

90

{deP} = aeP {39} ( 229)
where the effective stress ¢ 1s given by

1
" {E.PUI-OZ)Z*'(°z'°3)2'*(°3’°1)2

( 230)
2 . 2 2 J|1/2
+6(012+cl3+ 023)}}
and
186/ ] = Lbﬁybgl, 387302, . . etc. ] ( 231)

A change in effective plastic strain deP 1s related to a change in effective

stress do by

EE
4G = gp— de’ = H’ de° ( 232)
T
and for small do, we can write
do = [35/30¢){do} ( .233)

If we premultiply Eq. ( 227) by Lga/aqj and make appropriate use of Egs.

( 229) and Eqs. ( 232) and ( 233), we obtain:
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L36/20) {do}

We can solve Eq.

and with the use

where

The matrix Cg,

( 221) - ( 237) the quantity D or

[D]

43P = L39/%c ) [D] {d¢]
oo

o |
o H’ +135/3s] [D] :aa‘}
Y3

(T+I(1-2V)

( 234) for deP,

{dep } =

of Eq. ( .229) we obtain

6x6
[C_1 {de}
22! |35/20] [D]

Tl-v)

used in Eq. (  223), is the transpose of [Co].
[D] is given by
v v 0 0 0 -
v (1-v) v 0 0 0
v v (l-y) ©0 0 0
0 0o o0 1;32" o 0
0 o o0 o0 1'22" 0
1-2vy
0 0
0 2

@ =u' @™ = (35Ro) [D](lac) - av® [BT]) ¢ 29

- ( 235)

( 236)

(¢ 237)

In Egs.

( 238)




Equations for Thin Shells, Discrete Rings, Solids of Revolution

The integration over the volume of the structure indicated in Eqs. (. 224) and
( 226) includes portions of the structure modeled as thin shell segments, dis-
crete rings and solids of revolution., Each of these analytical models of the

actual structure has its own kinematic law,

Thin Shells

Each shell segment may contain a number of layers, each layer with its own
orthotropic properties G, El’ Ez, V12 and each with its own stress-strain
curve. A reference surface is selected; the strains anywhere in the wall are
expressed in terms of the strains and changes in curvature of this reference
surface as in Eqs. ( 82), and numerical integration is carried out through
the thickness of each layer by Simpson's rule, with five integration points

being used through the thickness of each layer.

For thin shells the stress and strain vectors given in Egs. ( 228) reduce to

lda]
|de]

Lgol, do,, dolZJ
( 239

ldey» deys deyy |

in which "1" denotes meridional direction, "2" denotes circumferential
direction, and "12" denotes in-plane shear, For isotropic materials the

6x6 elasticity matrix [D] in Eq. ( .238) reduces to
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1 v 0
[D] = Ez v 1 0 ( 240)
(1-47)
0 0 1.y
2

Equation ( 240) can be derived from Eq. ( 238) by remembering that for shell
theory the stress component 0q normal to the shell wall is zero. From the

third row of the [D] matrix in Eq. ( 238) one can derive

. v
€3 = - (“"‘)"’1 te,) ¢ 241)
1-v ,

With use of Eq. ( 241) and recalling that the transverse shear strains €13

€y3 = 0, one can condense the matrix in Eq. ( 238) to that in Eq. ( 240).
The 6x6 [Co] matrix given in Eq. ( 237) for general three-dimensional plas-
ticity analysis becomes a 3x3 matrix in shell analysis since the stress vector
in Eq. ( 239a) contains only three components. The effective stress in Eq.

( 230) simplifies to

1/2
) ( 242)

— 2. .2
(o] =(o1 +cz -0102+3612

Discretization in the meridional direction is by the finite difference method,
as described previously., Figure 21 shows the arrangement of nodal points
used for the discretized shell analysis, As already stated, the energy density

.

is evaluated midway between adjacent "u" or "

v" nodes. The u, v, w dis-
placement components in the neighborhood "E" + %/2 are expanded in a Taylor

series about the point "E", where the independent variable is the meridional
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arc length 8, Thus for portions of the structure being treated as thin shell
segments, Eq. ( 210) might be written in the form

7
u = h, (s)q ( 243)
iZl i i

in which the domain over which Eq. ( 243) holds is the neighborhood "E" + %/2
and the q; are the 7 nodal displacement components Wigs Uy Vi Wi Ugigs
Virrr Va4l indicated in Figure 21 and Eq. ( 115).

The hi(s) could be derived from consideration of the linear variation of u
and v and the quadratic variation of w within each shell finite difference
element as shown in Figure 36, However, the hi(s) are not needed, since
there is only one Gausslan integration point per element. Therefore, expres-
sions such as given in Eqs. ( 110), ( 111), ( 113), and ( 116) are suffi-~

cient,

Discrete Rings

If warping is neglected, the strain energy associated with a discrete ring
arises from circumferential strain and torsion. The integrals over the vol-
ume indicated in Eqs. ( 224) and ( 226) have the form

4

] | f& ¥y (x, + x') dy' dx' do ( 244)
8y'

in which the (x', y') coordinate system has its origin at the ring shear cen~
ter r, andthe 1imits of x' and y' define the shape of the ring cross

section. The function f£f(x',y') represents the integrand of Eqs. ( 224)
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or (. 226), The strain vector contains two elements

Lﬁ—l - l-Ehoop’ Etwist—l- ‘ : ¢ 245)

and the elastic matrix [D] is given by

]
<]

(p] ( 246)

1

0 201 +v)

The 6x6 Co matrix given in Eq. ( 237) for general three-dimensional plasti-
city analysis becomes a 2x2 matrix in discrete ring analysis since we are only

ncerned with the two stress components .
co P 0hoop’ Otwist

Each discrete ring cross section can be modeled as if it consists of an assem-

blage of K straight segments of thickness T length L and orientation

k? k?

angle ¢k’ k=1,2 ,.., K, Figure 45 shows an example, The material of
each ring segment may have a different stress~strain curve and different

‘creep properties. The temperature may vary along the length L, of the ring

k

segments but must be constant through the thickness Tk' The integrated ring

properties are determined by Simpson's rule integration within each segment for

all K segments.

Further details are given in Refs. [ . 26] and [ 54]. .
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Solids of Revolution

Isoparametric finite elements [ 52] are used to represent those portions of
the hybrid body of revolution for which shell theory might be inadequate.
The element goemetry is given in Figure 46. The independent variables are

x, 6 and r and the corresponding displacement components are Ups Uy, Ug.

This element was chosen because it can adequately predict shell behavior as
long as all eight nodes are present. Hence, it does not create spurious dis-

continuity stresses in the neighborhood of a junction with a finite difference

shell element.

Within the element the displacement field Uys Uy, Ug and r, x coordinates
can be expressed in terms of the nodal point values and interpolation formulas

written in terms of the local coordinates s, t which vary from -1 to 1:

8
(x,r) = ) hi(s,t)(xi,ri)
i=1
( 247)
8
i i 1
(ul,uz,uz) = 121 hi(s,t)(ul,uz,u3)

in which the interpolation formulas hi(s,t) are given along with the kine-
matic expressions and other details in the following section. Integration
over the x-r plane 1s performed by Gaussian quadrature in which ithe numbers
of Gaussian points in the "s" and '"t'" directions are input variables, The

circumferential variations of displacement components are given by Egs. ( .219).
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Detalls of the Analysis of a
Two-Dimensionally Discretized (Solid) Region

In this section expressions will be derived for most of the components of the

energy functional which appear in Eq. ( 209).

Strain Energy - General

The strain displacement relations valid for small strains and moderately

large rotations are given by Novoshilov [ 55]:

ou
- 1 12 2
f1 %ot el o)
e —-l-(u nu)+i(ﬁ>2+w2)
2 r 3 2 AN | 3
ou
- 3 o2 02
€3 = 57t a(w1+w2)

(. 248)

Buz
€1 nuI/r + el M
du
e = 2

in which the rotation components Wys W5 Wgs shown in Figure 46, are given

by
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20 = - - —i
1 (m13 uz) ST
ou du
2w, = =1 . _3 ( 249)

In writing Eqs. ( 248) and ( .249) it has been assumed that

U = o (x,r) s8inn 6
u, = u, (x,r) cosn 8§ ( 250)
u, = u, (x,r) sinn ®

The kinematic relations ( 248) and ( 249) are consistent with those used

for the shell analysis, Eqs. ( 90) and ( 91).

Within the element the displacement field U, Uy, Ug and r,x coordinates

can be expressed in terms of the nodal point values and interpolation formu-
las written in terms of the local coordinates s,t which vary from -1 to

1 as in Egs. ( 247)., 1In Ref. [ 42] the interpolation formulas hi(s,t)

are given by:
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Delete if node I is not included:

I=5 1=6 =7 1=8
h1 = R S/4 -h5/2 -h8/2
h. = R -
, = RS/4 hg/2  -h/2
h, = R S/4 i, .
3 / h6/2 h7/2
( 251)
h, = RS/4 - -
4 / h,/2  -hgl2
*
h5 = R S8/2
T ok
h6 = RS /2
h, = rR*s/2
_ %
h8 = RS /2
in which
— * 2
R = 1+t R = 1-t R = 1-t¢t |
( 252)
— * 2
S = 1+ s S = 1-38 S = 1 -5

and the numbered subscript refers to node point number in the 8-node isopara-

metric quadrilateral of revolution, The nodes are numbered as shown in Figure

46.
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The kinematic relations ( 248) and ( 249) contain derivatives with respect

to x and r., These can be expressed in terms of derivatives with respect

to s and t by means of

- or Ik 2
x a3t ds os
2 | Pl w| |o
Br ot 98 at
where
_ Bxar _ ardx
IJl T 9s ot 38 ot ( 254)

In terms of s and t the infinitesimal volume element 4V in Eq. ( 209) is

av = |J| rdsdtde ( .255)

Strain Energy: Nonlinear Axisymmetric Prebuckling Analysis

The kinematic relations for axisymmetric deformations including moderate rota-

tions are obtained by simplification of Eqs. ( 248) and ( 249):

du
SN L1 2
1 % T2 %
£, u3/r
du
= 34 1 2 256
. ) Bul . Bu3
13 ar Ax



in which the rotation component Wy is given by

1 3 ( 257)

If we let

= dx, = or. = 9x. = or
2117 ds° 212 °%s' 22173t 2227 5t ¢ 258)
then, using Eq. ( 253), we obtain
du du
. 1 1 1 1 2
&1 = T (azz 35 " 212 —a?') 72 Y
( 259)
1 du du
e e foa 3 3\, 1 2
Y (a’Zl 3 P11 )+ 2 Y2
1 aul Bul du au3
‘137 7l ('321 w7 %22 W 2w
and
2w, = —— {-i aul t+ a _3_111_ -a 3113 ta —a:l}-)
27 ;7 (P21 & T E ez B 12 ( 260)

With use of Eq. ( 247b), we can write Eqs. ( 259) in the form
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(&1\ 4x16
(e} - <ez> B

e, d

\E13

in which

1 2 2 3 3

8

= 1 8
Lq.l - Lul, u3, “1’ u3)u1’ u3. ¢ o e o \11, u3J

( 261)

( 262)

The superscripts in Eq. ( .262) denote nodal point numbers as shown in Figure

46, The terms in the 4x16 matrix [B] are

1 Ohy ohy )

B(1, 2I-1) = 171 (azz s~ 1275t
B(2, 2I-1) = 0

B(3, 2I-1) =0

B(4, 2I-1) = l—;l B i raA T

1 ( °by ah:)

in which I 1is the local node point number,

The rotation w, may be written in the form

2w2 = [_-R__J{q}
138

B(1, 2I)=0

B(2, 2I) = h1/r
3h
B(3,2I) =~ ('321‘5‘31‘ +

7]

1 ohy
B(4, ZI) = —_— (azz -g -

|71

( 263)

. ahI
11 ot

)

21278t

( 264)




in which

R(21-1) = B(4,2I-1)  R(2I) = -B(4,2I) ( 265)
The hI in Eqs. ( 263) are given by Eqs. ( 251).
Using Eqs. ( 255), ( 261), and ( 264), we can write Eq. ( 224) in terms

of the nodal point displacement components. The first and third terms in

Eq. ( 224) are expressed in the combined form

o€ 1 ( 266)
(LA €] [D,ro] + LO’OJ) tsa;gq‘;w
where
lse]l = le-e | = lo | = le, - €b - -c| D] ¢ 267)

in order to save computer storage space and to reduce the number of calculations

required to obtain the stiffness matrix. Equation ( 224) thus becomes

K K, R.R,
32y 8 Ixd  4x4 Ix4 i3
S T T 2 ;1Atk (Ceed D7, T4 Lo ) 2%
s t 0’) ¢ 269
uJZRi
o 0
+ 1B,] [D, ]{Bi} RPN |
0
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—_ - ( 268
cont'd)
+ LwZRj, 0, szj. 0] [DTo] {Bi;
szi
R Q
+ l.szJs os sz ) OJ [DTO] W R, lJ'l‘
21
0
kt’ k8
in which Ask, Atk are Gaussian integration weights; Ks and Kt are the

numbers of Gaussian integration points in the s and t directions; ii

is the ith member of the vector [_i__l given in Eq. ( 265); llSj_l is the

transpose of the jth column of [B]; and {Bi} is the ith column of [B]

All terms in Eq. (. 268) are evaluated at s and t corresponding to the

Gaussian integration points (Sk , tk ) in the element. Equation ( 268)
s

t
is analogous to Eq. ( 68) in the curved beam analysis,

Equation ( 226) can be written in the form

Ks Kt :
M- 3 oe, 3 s |((Lee) tog, T+ 10 ) {2y
k =1 k=1 |
- ( 269)
szi
+ (toestog, 1 + Legd) & ¢ | 191
0 K,k

t s

In the axisymmetric prebuckling analysis the terms in Eq. ( 268) contribute

to the left-hand side of Eq. ( 213) and those in Eq. ( 269) contribute
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to the right-hand side of Eq. ( 213). Equation ( 268) represents a contribu-
tion to the (i,j)th term of the local stiffness matrix for a single solid
element of revolution, The entire local stiffness matrix is obtained by
variation of 1 and J to cover all 16 nodal degrees of freedom associated
with that element. The stiffness matrix of the entire solid axisymmetric
structural segment is obtained by assembly of other local matrices derived for
other solid elements. Equation ( 269) represents the negative of an analo-

gous contribution to the "loading" vector.
Strain Energy: Nonsymmetric Analysis
Linear Nonsymmetric Stress Analysis

The linear solution can be thought of as the solution obtained after one
Newton~Raphson iteration with zero used for the starting vector. Thus, Eq.
( 213) holds énd Aq now represents the entire iinear solufion, nof just
a correction vector, The strain displacement relations'( 248) should be

linearized. For each circumferential harmonic these relations have the form

ginn o cosn 6
i 6 cosn @
6x1 6x24 sin n
{e} = [B] ({q} sinn . cosn@ ( 270)
sinn € — cos n 6
cos nb sinn 6
cos n 8 sinn 6

with |e| given by Eq. ¢ .228b) without the d's, and

1 2 2 2 8 8

TR 8 ( 271)
Lq-] - Lul uz’ u3! ul’ uz’ u3’ e & o o ul, uZ’ u3 J
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Equation ( 224) becomes

K K
8 t
2%y _ m As A LB, | ?1’;(2_] {B.} |J]|r ( 272)
39,99, Z K Z b |55 i ;
4% k =1 k=1 .
t' s

in which the subscripts [ ]k k signify "evaluated at the Gaussian integra-

tion station (sks,tkt)".

Equation ( 226) becomes

Ks K%
U _ T irpl(B.} |3 ( 273)
.a_ai_n ZIAskkzlAtk LeJ[]{1}||r

ksﬂ t t’ks

in which [D] is given by Eq. ( 238). 1If n=0 the factor s should be re-

placed by 2m. The 6x24 matrix [B] is given by

d d
] by by
B(1, 31'2)=|T| (azz as alz'SE‘)
!
B(l, 31-1)=0 B(l, 3I) = 0
B(2, 31-2)=0 B(2, 31 -1) = -n.hI/r
B(2, 3I) = hI/r ;
B(3, 31-2)=0 B(3, 31-1)=0 ( 274)
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3 3
1 by by ¢ 274
?(3’ 31) = ITI ('321 5 T a11"a"t‘) cont 'd)

3 3
B(4, 31-2)= (‘azl 5 T en 'a'?‘)

|3
3  3n\
S1) = _ 1 hy by
B 3ot =0 Ble 3h = 17] (azz—a? -3y, ér)
dh. 2
o 1 1 by
B(5, 31 2) nhI/r B(5, 31-1)—'——|J| (azz—a-g— -alz '5?—)
3h d
2y = _ 1 1, M
Bl6, 31-2)=0 ‘B((” 3L - ”‘m('azl S5 7211 "aT)‘hI/r '

B(6, 3I) = nhI/r

in which I = 1,2,3, ... 8, refers to the local node point number; hI is
given by Eq. ( 251); and ;1> 8195 397» 8y, aTE given by Eq. ( 258) with

use of Eq. ( 247a).

The deformations due to a general nonsymmetric load are calculated by super-
position of deformations of the form ( 250) or, if n 1is zero or negative,

of the form

uy =y (x,r) cos n 6; u, = uz(x, r) sin|n|e; u, = u3(x, r)cos n o ( 275)

3

corresponding to each harmonic of the Fourier series representation of the

load.
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Equation ( 272) represents the contribution 1in the nth circumferential har-
monic to the (i,j)th term of the local stiffness matrix for a single solid
element of revolution. The entire local stiffness matrix is obtained by varia-
tion of 1 and j to cover all 24 nodal degrees of freedom associated with
thét element. The stiffness matrix for the entire axisymmetric solid region
is obtained by assembly of similar local matrices derived for other solid ele-

ments in the two-dimensionally discretized structural segment.
Nonsymmetric Vibrations and Bifurcation Buckling

The starting point for this derivation is Eq. ( 224) with Eq. ( 266). The

(i,j)th element of the stablity or vibration stiffness matrix is given by

o) - f J](Lc] e

( 276)

3
+ Lae/aq;’J (D, a: )|J| rdsdtd®

oo

9=q,

In the bifurcation buckling and vibration analysis the term Ae in Eq. ( 266)

is zero because the stiffness matrix is evaluated at 9=q,- Therefore, e=¢
o

in the first term in Eq. ( 266). The six-element vector LgoJ- is given by

ool = 19100 %200 930> T130° %120° %230 ¢ 277)
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in which the first four components are calculated from Eq. ( 267) and the
last two components are zero if the axisymmetric prebuckled state is torsion-

less,

As in the shell analysis [Eq. ( 215)] the strain vector can be divided into

three parts:

Lel = L9« D]+ @] ¢ 278)

(1)

where superscripts , 1=0,1, 2 indicate zeroth, first and second order
in the infinitesimal buckling or vibration mode qb = u?, ug, ug. The zeroth
order represents the axisymmetric prebuckled state. The first and second order

terms, derived from Eqs. ( 248), are given by ‘ ' .

b
. du
(1) 1 b .
1 %t Y0 Uz )einno
}s(zl) (ub3/r - nubzlr) sinn 0
b
du
(1) 3 bl .
€3 ('ST LY ‘”z)smne
{J”} . - ( 279)
P aub
t(l) ——l— + ——ii i ¢]
13 or x)smn
. ,
. du
1
< (null)/r s - 90 ‘”11)) cos n 6
(1) 5“1?3 b b - b .
623 (—81—_- + (nu3- 2)/ r - (.DZO w3)cosn9
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2 2 '
; 2) .]_. b . 2 b 2 )
ﬁ(l > (wz smne+w3 cos n

2 2
L (2) L4 ob 2
g > 93 + w3 cos n 8

2 2 |
: 1 b 2 b . 2
e»(32) 5 (wl cosn @+ wz sin no

{..E(z)} } _ ( 280)

.e (123) -wlf w]; coszne
3(122) -wll) wg sinn® cosnb
er(223) —wg u)g sinn® cosn?b

Equations ( 279) and ( 280) are based on the assumption that

b _ b

uo= oYy (x,r) sinnsg

ug = u];_ (x,r) cosnb ( 281)
b _ b

uy u, (x,r) sinnd

Two of the prebuckling rotation components w and w are zero because

10 30
the prebuckled state is axisymmetric and torsionless. The prebuckling shear
terms 9120 and Oy3g are also zero, Hence, the circumferential coordinate
8 can be separated from the other independent variables s,t in the usual

way, thereby leading to reduction of a three-dimensional phenomenon to a num-

erically two-dimensional analysis,
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(2) 2 b _ b
It‘ is clear that only |e '| will contribute terms to the vector |_§ ;s/aqi aqj_[
(1) b b
and only |e'~’| will contribute terms to the vectors ]_ae/aqi_[ and I__Z)e/aqj_l.

As in the case of the thin shell theory, we can write Eq. ( 279) in the form

sinn 6
i 0
| 6x24 6x24 sl n

1 6
et - ([51] + 0,0 [Bz]) (¢} {&22? ( 282)

cosn b

cos n o

in which [B1] is given by Egqs. ( 274) and [qb] is
by _;.bl bl bl b2 b2 b3 b8 b8 b8

Lq"] [_u,uz,ua,ul,uz,u:’,....ul,uz,}13.| ( 283)

The matrix [BZ] is derived from Eqs. ( .279), ( 249), ( 247), and ( 253)

1 ohy Ohy
B,(1, 31 - 2) = " (- ay 5 * all-at—) B,(1, 31-1) =0
3
3h 3h
B,(1, 31) = - (322 -2, —_Btl)
BE
B,(2, 31 - 2) = 0; B,(2, 31-1) = 0; B,(2, 31) = 0

Bz(3, 31 - 2) = Bz(l, 31 - 2); B2(3, 31-1)=0

BZ (3, 3I) = Bz(l, 31)

B2 (4, 31 - 2) = 0; BZ(4, 31-1)=0 B2(4, 31) =0 ( 284)
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B2(5, 31-2)=0 ' ( 284
cont'd)

1 -} BhI
BZ(S, 31 - 1) = hI/r + —-—-| | -a21 —-——as + all -a'—t—
J
BZ (5, 3I) = - nhI/r
Bz(é, 31 - 2) = nhI/r

; 3hy 3hy
. B,(6, 31-1) = 2035 "212 %%

B2(6, 3) = 0

After integration over © in closed form and numerical integration with re-

spect to s and t, we obtain Eq. ( 276) in the form

K K
2./b s t au)b awb awb awb
- U _ A A o 2 2 " 3 3
Sab oD = Sk :2:: by 10036 36 3B 3B
Q4 °9 f k =1 k =1 9 ©9; q; qj
=9, 8 t
aw‘f au)ll) aw}; awg au)tl) aw}i awg au)g
+ o + + o +
20 b b b b 30 b b b b
qu aqj qu qu aqi qu aqi -aqj
awb awb Bwb Bwb
o 1 3 + 1 13)
- 130 b b b
? dq; 9q. 9q.
4 J i ( 285)
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(285
- b cont'd)
+ 13¢°/3q]] [B) +0,, 8,17 [Dy 1[B, + ‘”zoBz]{_a&E‘§ 7]«
g

ks’ kt

b b

In Eq. ( 285) Wis Woy wg are given in Eqs. ( 249) with superscript ( )b

added; 90> %20° “30° %130 a?e the stresses associated with the x, @, ?f XY

directions, respectively; |[D is the 6x6 constitutive matrix including

To]

effects of plasticity [Eq. ( 225)]; and w is the prebuckling rotation

20
component analogous (but with opposite sign) to the meridional rotation Bo
of the shell., Note that Eq. (. 285) is valid only if the terms DTolS’ DTol6’
DT025, DT026’ DT635’ DTo36’ DT045’ DT046 in the constitutive coefficient

matrix [DTo] are zero, If these terms were nonzero, one would not be able

to separate variables as has been done,

The terms in Eq. ( 285) multiplied by 910» 9907 9390 2and 050 CADN be
expressed in the form
24x3 3x3 3x34
b,. by =T = lag® 286
[2a° /345 | [R]™ [o,] [R] iaqi ( 286)
in which [00] is given by
(o +o ) 0 -0
3x3 20 730 130
[0 )] = 0 (010%950) 0 ( 287)
9130 0 (o10%020)

and [R] occurs in the transformation from the rotation vector
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WPl = Lo ub, eyl ( 288)

to the nodal degree of freedom vector, [g?j:

3x24
fw} = (R {"} ( 289)

The matrix [R] can be derived from Eqs. ( 249) with use of Eq. ( 253).

The derivatives of the nodal degree of freedom vectors 'qublaq?ﬂl and

L@qb/aqg_l are simply

1x24
2a°/5a5 ] = [0, 0, 0, ... 0, 1, 0, 0, .. ( 290)
rcorrespénds to B
d.o.f, number "j"
1x24
l_gaqb/aq?_[ = |0, 0, ... 0, 1, 0,0, . ( 291)

~

corresponds to
1"en

d.o.f. number "i
so that

1x24 24%3 1x3
lag®/2a) | T = IR, |

3x24 24%E 3x1

— a -—

Rl {-= b = (R} ( 292)
29, ,
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Similarly,

1x24 24x6 1x6
b, b T
Dq /aqj_l El + wZOBZ:[ = L(Bl + ‘”zoBz)j_l
( 293)
6x2s  _ 24EL 6x1
89 ¢ -
El * “’2032:[ { b} {(Bl + wy08,) }
aqi i

Using the expression ( 286) and Eqs. ( 292) and ( 293) in Eq. ( 285), one

obtains

= Tl
[
[=d
]
=3
n
IIMmN
>
[
P
t~1
o>
[ad
s
|r-—ﬁl
=
o
|-
a
(@]
W
£l
(=N
et

aq . k
=9,

9q,

L

( 294)

+ (B, + mzoBz)j_[ (D] {(Bl + mzoBz)-iH IJII]

ks’kt

In modal vibration analysis Eq. ( 294) represents a contribution to the local

tangent stiffness matrix for a solid finite element of revolution that is loaded

by stress components %10° 990> 9302 %130 and deformed by rotation w20’ In
bifurcation buckling analysis the loading is divided into two parts, as de-

scribed earlier [see Eq. ( 122)1:

Pp = P + AAp ( 295)

20 associated with the load increment Ap is
f

neglected. Assuming that the 'fixed' part pf gives rise to Ci’ o and

and the prebuckling rotation Aw

the increment Ap gives rise to Ao, Aw one can write Eq. ( 294) in

20°

the form
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5 24P
k k k
X b - Kij = T [Klij + AKZij] ( 296)
qiaq

in which k denotes finite element number. The (i,j)th termof the stiff-

k
ness matrix Klij 1s given by
K K
S t
k k k
K = ) s 1 At lJ(s t )| r(s_,t )
i o Kgmr K |88 8'e
s t
( 297)
k
f
X HFI +wB,) —l[DT {[B + w fp 5) } + [3 _[[c {R;}
s ,t
g 8
and the (4,j)th term of the load-geometric matrix K;ij is given by
S T )
K,,. = As At lJ(s t ) r(s t )
e o T N N L ‘g
s t
Kk ( 298)
s ,t
g g

where superscript k indicates finite element number and sg,tg indicate the
(s,t) coordinates of the Gaussian integration point. One can readily see the
analogy between Eq. ( 297) and ( 298) for the two-dimensionally discretized
solid of revolution with Eqs. (° 136) and Eq. ( 137) for the thin shell.

The local stiffness and load-geometric matrices for the isoparametric quadri-
lateral 8-node elements of revolution are dimensioned 24x24, whereas those for

finite~difference shell element are dimensioned 7x7.
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Kinetic Energy

The kinetic energy in Eq. ( 209) has the general form
1 =2
v _

in which m is the mass density and the total displacement vector u is the
sum of the axisymmetric prestressed state Go and the infinitesimal vibration

mode Gb:

- _— , =b sinn 8\ o "
u=nu +u (x, r) ( or e ( .300)
cos n 6

Since the prestressed state is static,

= -b sinn 6 .
u =40 u (x, r)( or )emt

cos n 6 (301

For the calculation of vibration modes and frequencies one needs the matrix
[aZT/aqgaq?]; i,j, = 1,2,3, ... N, where N is the number of degrees of
freedom in the vibration problem. Recalling that Gb is a linear function

of the nodal degrees of freedom qb, one can write

2 . 2 : s

3°T =b —b

3¢P ag? ='sz i a:l 'gg (sm“ne)dv ( 302)
. 09 s :

q1 J v J cos n b

The displacement field in the quadrilateral isoparameteric finite element is

given by Eq. ( 247b), Therefore, Eq. ( 302) can be written in the form

2
CTR-I =0%n fjt‘ mhi(s,t)hj(s,t)lJlrdsdt ( 303)
8
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The integrals in Eq. ( 303) are evaluated by Gaussian quadrature. The local

mass matrix is dimensioned 24x24.
Body Forces

The term in the energy functional ( 209) related to body forces is
- . — _ a_
f F - suav -f Fb-zlci-dVGq (. 304)
A A’

If the displacement vector u is a linear function of the nodal point degrees
of freedom ¢q, the body force term generates contributions only to the first
variation wi of the energy functional, It is assumed here that body forces
are due to rigid body accelerations of the center of mass, angular accelera-
tions about the center of mass, and angular rotation about the axis of revolu-
tion. Figure 47 shows a body of revolution with components of translational
acceleration ax? ay, a, and rotational acceleration éx’ &y’ &z' In order
to transform Eq. ( 304) into a form suitable for programming, one must have
the local components of acceleration 815> 8y> B3 corresponding to Uy, Uy, Ug
at a point at a radius r from the axis of revolution and a distance d from
the yz plane in which the center of mass is located. These components, in

terms of a, ay, a,, W, Wy, wy, w,, are

. [}
g, = -a tr (wz sin 6 - wy cos 6)
g, = ru _* (a, - dwy) sin § - (a.Y + du'oz)cos ] ( 305)

2 - S
g3—rwx-(ay+dwz)s1n6-(az-dwy)cose
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Equation ( 304) can be written in the form

f Fb- dudV = f (mgl 61.11 + mg, 5\12 + mg36u3) dav ( 306)
v
Since u;, up u, are functions of the nodal degrees of freedom g, Eq. (. 306)

.can be written in the form
[-1-5 . Bu f (g ' auz 8u3

b 35 'g— 8 3¢ 1 g3aq)dV ( 307)
after cancellation of §q.

In general the displacement field Ups Uy, Uy can be expanded in the trigo-
nometric series as in Eq. (. 219). Because 81s 8> 84 contain only terms
independent of 6 and terms which vary as sin® and cos6, only the terms
in Eqs. ( 219) with n=0 or n=+l contribute to Eq. ( 307). After per-
forming the integration with respect to 6, one obtains for the right-hand

side of Eq. ( 307)

For n=0
30 ul®) 34(0)

21 ff (—ax-aql—' 4 ru) 5———- + 1‘(1)}2{ 3-—?—) rd)-cdr ( 308)

Forn=+1 )
[ ) (au(zn ull) |
T . m |rd rru (ay + dd)z) P + 59 rdxdr (' .309)
Forn=-1
au(‘]-) a (2"1) au(‘l)
™ J, m |-r® -r—-— + (a -d® ) aq - aq ) rdxdr ¢ 310)
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Thin Shell Segments Body Forces: The displacement components Uy Uy, Ug

are assumed to be constant through the thickness. 1In terms of wu, v, w

[Fig. 44(a)], Uy, Uy, ug are

o
i

u(r/RZ) - wr'; u, = v
( 311)

[
w
[

ur' + w(r/Rz)

Furthermore wu, v, w can be written in terms of the nodal displacement quan-

tities

Lol = lwgge wgs s wys g Vi Wi | ¢ 312)

by means of Eqs. ( 114). The double integration indicated in Expressions
( 308) - ( 310) is replaced by single integration along the shell meridian,
and the quantity m 1is interpreted as the mass per area of shell reference

surface.

Solid of Revolution Body Forces: The displacement components Uy, Uy, Ug

are written in terms of the nodal degrees of freedom by Eq. ( 247b). If the
right-hand side of Eq. ( 247) is used in Egs. ( 308) - ( 310) and the
(x,r) integration is transformed into (s,t) dintegration according to Eq.

( 255), the contributions of the body forces to the loading vector of the

discretized problem are obtained.
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Surface Tractions on Solid of Revolution

The term in the energy functional ( 209) related to constant-directional sur-

face traction is

F .o =
F . .
f s Su dA or f FS .8-(-]— dA 6q ( 313)

Area

As with body forces, this term generates only contirbutions to Wi.

The three components of external surface load P> Pos P» acting on a solid
region (one element in this example) are shown in Figure 48. These posi-

tive values form a right-handed system.

The work done by the surface tractions acting over an elemental length d&

(shown in Figure 48) is

dw

[ptdzut + pcdzu2 + pndlunJ rd® ( 314)

in which the normal and tangential displacement components u and u,_, are

t
given by
= dr dx
Uy Wity
' ( 315)
= dx dr
W = w3z tu; gy
The elemental work done is therefore
aw = [pt(uldx + uydr) + p diu, + p (~udr + u3dx)] rd# ( 316)
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The variables that appear in Eq. ( 316) can be written in terms of the local
coordinates (s,t) of the element by means of Eqs. ( 247) and the relation-
ships

ar=3ds + rat;  ax = gXds+2X at ( 317

The finite element depicted in Figure 48 has four faces, labeled (:), (:),
(:), (:). On each of the faces the work done by the surface tractions can be

shown to be given by:

On Face (i): s = +1.0, t varies

On Face C): s varies, t = -1.0




On Face (3): s = ~1.0, t varies

!

K 8 1

£ . | 1

w = A - 1 i if 2 2
® Bk Zh s {p" (“lx’t+“3r’t) ¥ Pculz(r’tJrX?t)

+ i + i
Pn ( ulr,t u3x,t) } ¢ 320
k
On Face QD: s varies, t = +1.0
Ks 8 . . . 3
- i i if 2 2
W@ = m kz-_;l rkAsk 5_;1 hi (sk, + 1) {pt (ul X, + u, r,s) + pcu2 (r,s + x,s) )
+p (-uir, +uix, ))
n 1’s 3™s jk (. 321)

In Eqs. ( 318) - ( 321) the factor m arises from integration of cdszne or
sinzne from O to 27m. If n=0 this factor should be 2w. The quantities

At and Ask are the Gaussian integration weight and KS, Kt are the numbers

k
of Integration points in the s and t directions, respectively. Subscript k
here denotes a quantity evaluated at the kth Gaussian integration station. Sub-

scripts ( ),S and ( ),t denote differentiation with respect to the local

element coordinates s and t.

The contributions to the loading vector are obtained from Eqs. ( 318) - ( 321)
by differentiation of W<:) through W(:> with respect to the nodal degrees of

freedom.
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0f course, in a solid region consisting of many finite elements, only those
elements with faces exposed to external surface loads yileld contributions to

the global loading vector.

Following Pressure for Solid of Revolution

The relevant term in the energy functional ( 209) is

sW' = -f f;- § [£(u)laa (. 322)
Area

The term arises from the fact that the direction of the pressure may change as
the structure deforms. As derived in the discussion associated with Eqs. ( 169)
through ( 171), the so-called "live-load" terms in the energy functional are

quadratic; they contribute to the stiffness and load-geometric matrices.

The expressions for each face of the isoparametric quadrilateral can be derived
from the nonlinear terms in Eq. ( .169) with l/R1 = 0, with the meridional arc
length element ds replaced by df& (see Figure .48), and with use of the trans-
formations ( 315), ( 247), and ( 317). For any of the four faces it can be

shown that after integration with respect to ¢, W' is given by

wr =1L P_|x, ds + x, dt} {-u dr+u-§52 ds + 2

2 n\®s 't 1df " M3dg) " Ppl|* g9 X’tdt)“z
face

( .323)

dx dr dr dx
-2 + dx dr (., dr . dx
_ (Pn,sds Pp,t dt)r (“1 ar T3 df,) ( Uy art U dz)J
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Differentiating with respect to the nodal degrees of freedom q; and qj,

one obtains

2urt du du du
. oW ( 1 dr 3 dx 1 dr
= 1 p. {x, ds+ x, -dt) (--5-— +va--—-——)§-—-——-—
. J face
du du., Odu
3 dx 2 2
+ aqj dz) - P, (x, 5 ds + x,tdt\, —-—qi ——qJ

S ax , 3 ar) (M ar M3 oax
oq. df aqj ds, 3q1 d 5qi ds

In analogy with Egs. ( -318) - ( 321), the following conditions prevail on the

four faces of the quadrilateral element:

On Face (:) s=+1.0, ds = 0, t varies, dt is negative
2

dr/di= -r /(r2 + xz)%'dx/dl,=-x /(rZ + x )%
't 't 't ' 't 't 't

On Face (:2 : s varies, ds is negative, t = -1.0, dt=0
2

arfap = -r, /(2.2 + %2 )% dx/dl = -x, [(x2 + %2 )
' Vg ‘gl ? ’g ’s ’s

1
2

* on Face (3): 8 =-1.0, ds = 0, t varies, dt is positive
’ 1
2 )2

_ 2, 2.3, _ 2
dr/dE—+r,t/(r,t+x,t) ,dx/d,(’:—x,t/(r,t'*'x,t

On Face Q s varies, ds is positive, t = +1.0, dt = 0
2

_ 2 2 .1 _ 2
dr/dz—+r,s/ (r,‘B + X.x) ; dx/de —+x,s/(r,s+ x,s)

1
2

161




The derivatives 0du/dq and L r,t, Xy X, ~can be obtained from Egs.

( 247). The integration in Eq. ( 324) is carried out by Gaussian quadrature

as with Eqs. ( 318) - ( 321).

Constraint Conditions for Junctions Between Thin Shells and Two-Dimensionally
Discretized Regions

The relevant terms in the energy functional (2.209) are

n

_ m nc m c
Ve = L or (& 2ty )+ 2 (é_lazka“k) (- .325)

These terms contribute to Wi [Eq. ( 212)] and BWi/qu [Eq. ( 214)]:

3y, m a, I 3 m 3, ¢ 2
e YR I YRR S SR I Y
G g1 %% 1 k%Y 5] 9§y 4k ogp  (33D)

Figure 49 shows a junction AB between a thin shell segment and a two-dimen-
sionally discretized region. At the junction u*, v, w*, and B at the end

of the shell reference surface must be equal to ul(sj,tj), u2<sj’tj)’ u3(sj,tj)
in the "solid" region and a rotation derived from the differences of u . (Sub~
script '"n" denotes 'normal to the junction line AB' and superscript "i" de-
notes "ith nodal point on the junction line AB'".) The coordinates sj and tj
coincide with the end of the thin shell reference surface on the line AB. In

addition, all nodal points lying along the junction line AB must be constrained

to remain on a straight line normal to the shell reference surface as the struc-
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ture deforms. This 1is accomplished by imposition of appropriate constraints on
differences of u for compatibility and uniformity of the meridionalArotation
B of AB and constraints on differences of u, for compatibility and ﬁniformity
of the rotation VY ,Of AB about an axis through sj,tj parallel to tﬁe meridi-
onal direction of the shell reference surface. The length of AB is free to
change, of course, since there should not be any constraint preventing strain
normal to the plane of the thin shell reference surface. fhus, typical con-

straint conditions at a junction line AB are:

% % .
u = ul(sj,tj); v = uz(sj,tj); w = u3(sj,tj)
_ .1 4 . _ 4 7
B = (un - un)/L74, ¥y = i(uz - uz)/L74
_ .3 4 . _ 4 3
_ i 4 . _ 4 i
8 = (un - un)/Li4, Yy = i(u 2 - uZ)/Li4
in which
u:‘l = u’i sind + u; cos P
2 2-.1/2
L..= [(x.-x.)" + (r.~-r,
1] [ 1 xj) (rl rJ) ] ( 329
g = w’- u,/R1 Shell wall
rotations at
¥y = (1/r)3w/3e6 - v/R ., t.
2 (sJ J)
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and superscript 1 denotes any node on the junction line AB. For each such
junction, therefore, there are 3 + 2(k - 1) constraint conditions, where k is
the number of nodal points on the junction line AB. The sign for Y in Egs.
( 328) as well as the nodal indices in all of the equations depend on which

end of the shell segment and which faces of the two-dimensional finite element

are involved in the junction.
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Section 5

LINEAR EQUATIONS FOR GENERAL SHELLS

The purpose of this section is to summarize certain aspects of the more widely
used linear shell theories, to explain where the differences originate, and to
comment on the significance of these differences to the engineer or designer
of shell structures. Much of the material here is abstracted from Leissa's

excellent survey given in chapter 1 of his monograph Vibration of Shells

[s6 1.

Introduction

Whereas in thin plate theory the differential equation of motion is univer-

sally agreed upon, the same cannot be said for thin shell theory. Differences

arise from different simplifying approximations and different points in a deriva-

tion where a given approximation is introduced. The more commonly referred to shell

theories are those by Donnell [ 57, 58], Mushtaxi [ 59, 60], Love [ 61,
62], Timoshenko [ 63], Reissner [ 64], Naghdi and Berry [ 65], Vlasov

[ 66, 67] , Sandexrs [ 68], Byrne [ 69], Flligge [ 70, = 71] , Goldenveizer

[ 72] , tur'ye [ 73], and Novoshilov | 74]. All of these theories result from

Love's "first approximation" and apply to shells of arbitrary curvature. For

comparisons of various thin shell theories the reader is referred to the work

of leissa [ 56], Koiter [ .75], Goldenveizer [ 76}, Klosner and Levine [ 77},

Naghdi and Berry [ 65], Kraus [ 78], Naghdi [ 79], and Kalnins [ 80].

165




Concepts from the Theory of Surfaces Needed for Shell Theory

The essential feature of thin shell theory is the complete characterization

of stress and deformation throughout the three-dimensional domain of the

shell wall by knowledge of the deformation of a reference surface. The expres-
sions for stress and deformation throughout the domain therefore depend on
parameters of this surface, such as its original shape and the extent to which

it has been stretched and bent.

Surface Coordinates

In order to measure deformations of a surface, we must attach a two-dimensional
coordinate system to it. Fig. 50 shows such a coordinate system and its
relationship to a three-dimensional system fixed in space. Any point on the

undeformed surface may be located by a vector
t = 1(0,B) ( 330)

in which o and B are independent coordinates of the surface. A system of unit

vectors i , i
a’ B

o= aj is depicted in Fig. 50. These so-called "base" vectors are given by

' Iﬁ parallel and normal to lines of constant B =BO and constant

i =7, /A, iB=r,B/B; i = (—iax—{B)/SinY ( 331)’
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First Fundamental Form

Three of the surface parameters needed for characterization of surface deforma~-
tions are the three coefficients of the first fundamental quadratic form,
which is derived from the square of the length of an infinitesimal arc

dr=r,ada+;,8d6=ds ( 332)

lying in the surface. The square of dr is a scalar quantity obtained from the

dot product dr.dr:
dr.dr = 632 = A2 daz + 2AB cos Yy dadf + B2d82 ( 333)

The three coefficients of the first quadratic form ( 333) are essential, for
example, in the derivation of strain due to stretching of the surface. The
engineering strain components expressed in terms of surface coordinates are
found by comparing d52 for the undeformed surface with ds*2 for the deformed
surface, with the location of the deformed surface r* = r*(0,R) being expressed
in terms of that of the undeformed surface ;.plus displacement components
u, v, w in the directions of the base vectors I&, Eé, Iﬁ:

r* =1 + ui_ + Vi, + wi, 334

a B n ( )
It can be shown | 74] that for orthogonal coordinate lines these reference

surface strains are given for linear theory by
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_l0u v oA w_
ea'Aaa+ABBB+Ra
u oB 10v w
eB—-A—B—a-&-+E—a-—é~+Eé' ( 335)
- A 9fuy,B 3fv
€8 "B B \a) " A Ja\B

in which e, and eB are the strains in the_Ia and._:i?B directions, respectively,
and e 8 is the in-plane shearing strain, a measure of the change in angle be-
tween the o and B coordinate lintes. All shell theoreticians agree with

Egs. ( 335).

There are differences of opinion, however, as to the expressions for the change
in curvature and twist of the reference surface as it deforms. A derivation
of these expressions requires what is called the second fundamental

form.

Second Fundamental Form

The second fundamental form has to do with the curvature and torsion of the
surface coordinate lines. leissa [ 56] presents a derivation of an expres-
sion for the normal curvature 1/R of any line element lying in the reference

surface
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1 LdOL2 + 2Mdadf + Nd82
R~ 2.2 2.2 (- 336)
A"do” + 2AB cosydodB + B"aB
in which the numerator on the right-hand side is the second fundamental
form with coefficients L, M, and N given by the dot products
=; .-'_- =_ .-'-- =-.- '.T
L " o0 1n, M r’uB lﬂ' N r,BB 1n ( 337)

The normal curvatures of the o curves and B curves are obtained by setting

either dBR or do in Eq. ( 336) egual to zero:

.1]? = -L/A° ; = —N/B2 ( 338)

By "normal curvature" is meant the curvature of the line formed by intersec-

tion of the surface with a plane normal to it at the point (c,B).

In the comparisons of shell theories given by Ieissa [ 56] it is assumed
that the o and B coordinate lines are lines of principal curvature of the

undeformed surface, that is, they are characterized by cos y = 0 and M = 0.
A Shell: A Surface with Finite Thickness

The shell theories developed in Refs. [ .57] = [ .74] are formulated consider-
ing an element such as shown in Figqg. 51. An infinitesimal slice of thick-
ness dz located a constant distance z above the reference surface has the

following geometrical properties:
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(z)

Lengths of Edges: dsa = A(1+z/Ra)da (. 339)
as,?) = B(1+z/R,)dB
B B
Areas of Edge Faces: da %) = as ‘® az; an,® = as,Paz ( .340)
a o B B
Volume: dV(Z) = AB(l+z/Ra)(1+z/R8) dodfBdz ( 341)

Inclusion or neglect of the texms z/Ra and Z/RB in Egs. ( 339) —\( 341)
gives rise to many of the differences in the various shell theories. Differ-
ences also arise between two theories both of which include these z/R ef-
fects initially but which use different simplifications involving neglect

of z/R compared to unity later in their derivations.

Iove's First Approximation

Love [ 61] made the following approximations in his classical linear theory
of thin shells:
(1) The thickness of the shell is small compared with the smallest
radius of curvature of its reference surface.
(2) sStrains and displacements are small. Hence second-order
texrms in the strain-displacement relations may be neglected
in comparison with first-order terms.
(3) The transverse normal stress is small compared with the other
normal stress components and may be neglected.
(4) Normals to the undeformed middle surface remain straight and

normal to the deformed middle surface and do not change in

length.
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These four assumptions constitute what Love called his "first approximation"
shell theory. The approximations are almost wniversally accepted in the

derivation of linear thin shell theories.

The first assumption gives the naison d'2tre for a discipline called "shell
theory"; the second justifies linearization of the theory; the third re-
stricts applications of shell theory to situations in which rates of change
of phenomena and geometry with respect to surface coordinates o and B have
characteristic lengths that are large compared to the shell thickness; the
fourth permits the reduction of a fundamentally three-dimensional problem
to one or two dimensions and is equivalent to neglect of transverse shear-
ing strains. The fourth assumption,known as Kirchoff's hypothesis, re-

stricts the applications of shell theory in the same way as the third.

Several authors, including leissa [ 56] point out the inconsistencies

in the four assumptions with Hooke's law. For example, if the normal liter-
ally could not change in length at all, then for an isotropic material a
considerable normal stress Un=v(da + OB) would be generated by uniform bi~-
axial stretching of a plate. . This normal stress, arising from the
Poisson effect, would not be negligible compared to the in-plane stress.
Conversely, if the normal stress is small and the in-plane stress is not,
then the normal must change length. Similarly, from Hooke's law, the

Kirchoff postulate implies zero transverse shear stress. However, the shell
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element cannot in general remain in equilibrium without transverse shear
force resultants (which are the integrals of the transverse shear stresses

over the wall thickness) acting along its edges.

These inconsistencies do not, of course, seriously diminish the value of
shell theory as an engineering tool. Emphasis on them represents an un-
fair misinterpretation of the mathematical model. The inconsistencies can
be deemphasized by introduction of the following two approximations to
replace the third and fourth above:

(3a) The work done by the maximum normal stresses acting through a
distance equal to the maximum change in length of the normal and the work:
done by the maximum transverse shear stress acting through a distance equal
to the maximum transverse shear strain times the thickness are negligible
compared to the total change in strain energy during deformation.

(4) The displacements in planes parallel to the reference surface may
be calculated as if the normal to the undeformed reference surface re-

mains straight and normal and unextended during deformation of this surface.

The apparent inconsistencies can also be de-emphasized (as they deserve to
be - at least by engineers) by introduction of a corollary rule stating that
the average normal stresses and transverse shear stress resultants must be
calculated from considerations of equilibrium rather than directly from the

kinematics embodied in the Kirchoff hypothesis.
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As a result of the Kirchoff hypothesis, the displacements U, V, W anywhere

along the normal to the reference surface can be calculated from

U(Ot,B,Z) = u(OL,B) + Zea(obﬁ)
v(a,B,2z) = v(a,B) + zes(a,B) (. 342)
w(o,B,2) = w(a,B)
in which Leissa [ 56] gives
=u _1 . v .1
Qa—- ROL A w,a, 96 RB B w,8 ( 343)

Differences in the Kinematic Relations for Reference Surface Deformation

As stated above, all shell theoreticians agree on the expressions ( 335) .
for the strains of the reference surface. However, there are differences
in the various theories for change in curvature Ka KB and twist KaB' These

expressions are listed in Tables 5 and 6.

Change in Curvature KG'KE . Except for the expressions by Donnell and

Mushtari, there is general agreement among the various theories concerning
curvature changes Ka and KB . The expressions of Vlasoy in Table .5 differ
from those of Byrne, Fliigge, Goldenveizer, etc., only in terms of order
ea/Ra’ eB/RB' this small difference arising from replacement of 1/ (1+Z/R&)

and 1/(1+z/R,) by their series expansions.
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The Donnell-Mushtari expressions differ in a more fundamental way from the
others in that they are bbtained by neglect of terms containing tangential
displacements u and v. A simple example will show that for certain com-
monly occurring cases of great engineering significance the Donnell-
Mushtari expressions are not sufficiently accurate. Suppose that we con-
sider inextensional deformations of an infinitely long cylindrical shell
of radius R. For a cylinder the surface coordinate & can be identified
with the axial coordinate x and the surface coordinate B with the circum-

ferential coordinate €. Then

a= |z, | = |'£,x| =1.0; B = | 'r‘,Bl [zigl =R ( 344)

The displacement components, u, v, w are the axial, circumferential, and
normal (outward) displacements of a point on the cylindrical reference sur-
face. Suppose that for the infinite cylinder we have displacements u = 0
v = vhcosne, and w = whsinne, in which v, and W do not depend on x. From

Egs. ( 335)

1. w 1
= = ' = 0 = = — _—= (e i
eu ex u : eB e9 R v+ R R ( nvn+wn)51nn9
1. .
- - = - 5
eaB € 0 g U + v o] ( 345)
For inextensional deformations
1 .
gy + =
ee R( nvn wn) sinn®é 0 ( 346)
which leads to
v, = wh/n (. 347)
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From Table 5 and Egs. ( 343) the curvature change expressions of

Byrne, Fllgge, etc. yield
(v - W) ( 348)
with v = vncosne, w = wnsinne and no x-dependence, we have

0; K, = l-(-v n+w n2) sinne { .349)
X (2] R? n n

~
it

which, for inextensional deformation (vh = wn/n) yields

(n2 - 1)wnsinn9 ( 350)

X
@
S L

The expressions of Donnell in Table 5 yield

.o n2

W= W sinn6 ( 351)
R

For n = 2 the expression for Ke is 33% in error. This error occurs when,
for example, one uses Donnell theory to calculate buckling loads of long
cylindrical shells under external pressure, for which the buckling mode-
corresponds to n = 2. The buckling modal displacements correspond.to
nearly inextensional. hoop strain, so ‘that the relationship ( 347) holds

with good accuracy. For shells which buckle with higher values of n, the

Donnell-Mushtari theory is more accurate.
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Twist, K Table 6 shows comparisons of the expressions for twist KGB
— 0

B
of the reference surface. The Vlasoy and the Donnell-Mushtari expressions
differ from the others for the same reasons given in the discussion of Ka
and KB. The Reissner,Berry, Naghdi expression differs because of neglect
of Z/Ra' z/RB compared to unity at an earlier stage in the derivation than
in the Byrne, Flliigge, et al formulation. Sanders' expression is derived
through correction of that of Reissner, et al by addition of the term with
the factor (1/RB - l/Ra) to eliminate non-zero KGB arising from rigid body
rotation. Kraus [ 78] demonstrates that the kinematic relations of

Byrne, Flligge, Goldenveizer, Lur'ye, and Novoshilov are consistent with
regard to rigid body motions. Kadi [ 81] found the same for the theories
of Love, Timoshenko, and Vlasov, but that the Donnell-Mushtari theory gives

non-zero curvature changes and twist due to rigid body translations.

Differences in Relations Involving Stresses and Strains

Through the Thickness

Total Strains. Table 7 shows differences in the expressions for total

strain at any point z in the wall thickness. The total strain is always
represented as the sum of stretching and bending components. The expres-
sions of Byrne, et al are the most general and result from application of
the Kirchoff hypothesis to the kinematic relationships of the three-dimen-
sional theory of elasticity. 1In the love, Timoshenko, et al theory z/Ra
and z/RB are everywhere neglected compared to unity. The theory of Vlasov
represents a sort of middle ground between the Byrne, et al and Love, et al

formulations, in that series expansions are used for l/(l+z/Ra), 1/(1+z/RB).
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Force and Moment Resultants. Since the strains are known functions of the

thickness coordinate (Table 7) and, given Hooke's law, the stfesses are
known functions of the strains, the forces acting on the edges of the shell
element'shown in Fig. ' .51 can be derived by integration of the stresses
over the thickness coordinate z. If the reference sufface is chosen as the
middle surface and if we rigorously note the dimensions [Eqs. ( 339) -

{ 341) ] of the slice of thickness dz shown in Fig. 51, we can derive

three force resultants acting on the face perpendicular to the ¢ coordinate’

[N

Na h/2 Oa

Nygl = Oaswl”iz‘} dz ( 352)
B8

0 -h/2 |

o 0z |

and three more force resultants acting on the face perpendicular to the

R coordinate

3 3

N o
B w2 | ¢ ;
21 .
NBOLr = O'BOLD- [l + -R—a-} dz (( 353)
-h/2 '
2 ) gz

The positive directions of the force resultants are shown in Fig. . 52.

These forces act at the reference surface and have units of force/length.

Similar .expressions for moment resultants can be derived
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b4
o} R
M -h/2 |"aB B
af \ ( 354)
M h/2 |o
B = f '40_6 [l + ';“‘] z dz
MBOL -h/2 { Bo o

which are shown in Fig. 53 and have dimensions moment/length. Note
that even though Ua8=08a from the symmetry of the stress tensor, the same
does not hold for stress and moment resultants: N , # N and M , # M
af Bou apf Bo.
unless R = R, because the areas over which the stresses ¢ ,,0, act
o B af’ Ba

are different on the different edges of the shell element shown in Fig.

51.

Tables 8 and 9 show expressions for the stress and moment resultants
in terms of middle surface strains and changes in curvature for an iso-
tropic homogeneous shell wall. The theories of Love, Timoshenko, Reissner,
Naghdi, Berry, Sanders, Mushtari, and Donnell are arrived at by indis-
criminantly neglecting Z/Rd and z/RB compared to unity. Novoshilov and
Goldenveizer obtain resultants by taking variations of the strain energy
functional and discarding selected terms. Byrne, Flligge, and Lur'ye
simplify the z-integration by using series expansions for the quotients

l/(l+z/Ra), l/(l+z/RB). Vlasov follows a similar procedure.
Which Theory is Best?

In modern computerized structural analysis in which energy methods are

almost universally applied to engineering shell problems it is most often
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advisable to avoid the use of Donnell-Mushtari theory or any theory in
which rigid body motion generates finite reference surface strains or
changes in curvature. The annell-Mushtari theory might still be applied
profitably in computer-oriented optimization analyses for preliminary
design. Such analyses usually involve sequential solution of many struc-
tural problems. The Donnell-Mushtari theory is computationally efficient
because it permits the use of fewer unknowns in equilibrium and eigenvalue
formulations. However, the analyst should be aware of the limitations il-
lustrated by the above example of inextensional bending of a cylinder. The
Donnell theory is accurate enough if the wavelength of the deformation

pattern is small compared to a typical radius of curvature of the shell.

The differences attributable to retention of Z/Ra’ z/RB are of little im-
portance for most engineering problems, and it is best to choose the simplest
theories in this regard. 1In fact, retention of the z/R terms can lead to
results that puzzle computer program users and cause them to distrust the
programs they use. Two good examples have arisen in one of the writers'
experience which caused him to remove terms involving z/R compared to unity
in the BOSOR4 [ 18] and BOSORS [ 25} computer programs, which are now
based on Sanders' equations. One example is a rather thick (R/t = 10)
isotropic hemispherical shell clamped at the equator and uniformly heated.
Far away from the clamped boundary the stresses should be essentially zero.
However, in the original versions of BOSOR4 and BOSOR5, which were based
on total strain relations of the Byrne, Flligge, type in Table 7,
the stresses did not die away but instead approached the values

E et 2, eB+z|<B

o(z) = 5 _ + - (1+V)aAT ( 355)
1-y (1+z/Ra) (1+z/RB)
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Far away from the clamped edge deformation of the uniformly heated hemi-
sphere consists of a sum of a uniform radial (normal to surface) expan-
sion plus a rigid body axial displacement. The rigid body displacement
does not give rise to any strains or changes in curvature. From the first
row of Table 5, the Byrne, Fllgge, et al relations for Ka and KB yield
zero curvature change corresponding to uniform radial expansion. The
strains e and eB for uniform radial expansion are given, from Egs.

( 335 a,b), by

= = =S T
ey = ©g w/R =ql ( 356)
At the extreme fibers, z = *t/2, the stress 0(z) in Egq. ( 355) is there-
fore given by the spurious values
E

O(#t/2) = 3 75 GAT(t/2R) ( 357)

If E = 107 psi, Vv =0.3, a = 10—5, AT = 3000, t/R = 0.1 the maximum stresses

are about -2000 psi at the outer fiber and 42000 psi at the inner fiber,
values large enough to stimulate a program user to telephone the program
developer. This exrror arises because actually the radial displacement due
to uniform heating is not uniform throughout the thickness as the theory
implies, but increases linearly with z as one moves radially outward from
the reference surface. This linear variation of w with z gives rise to
1+z/R terms in the numerators of the first two terms in Eg. ( 355) which
cancel the like terms in the deonominators, resulting in a correct predic-
tion of zero stress far from the clamped edge of the uniformly heated hemi-

spherical shell. However, the same correct result is obtained simply by



b§ neglecting the z/R terms in Eg. ( .355) and simultaneously ignoring the
true nature ofnthe linearly varying radial displacement, as the Kirchoff
hypothesis requires. This example demonstrates that it is inconsistent to
include z/R terms compared to umity, as in the first row of Table 7, while

neglecting the effect of extension of the normal to the reference surface.

The second example in which "small" z/R texms proved troublesome in BOSOR4
involved the axisymmetric shell structure shown in Fig. 54 (a) subjected
to an axial load V. The shell is a wheel rim. Half of the wheel rim is
modeled as a shell with 10 segments as shown in Fig. 54(b) . Some of
these segments have small ratios of meridional curvature R1 to thickness t.
For example, in Segment@Rl/t = 1.29., 1In Segments@,@,@,@, and
Rl/t = 2,14, 2.10, 2.42, 3.36, and 3.36 respectively. Use of thin shell
theory for prediction of stresses in these segments ig questionable. Fig-
ure .54 (c) shows how the wheel rim deforms under uniform axial load V.

The extreme fiber stresses predicted in computer runs with and without the
z/R terms are plotted in Fig. .55. The discontinuities in the"z/R included"
curves are due to large discontinuities of z/R at segment boundaries. These
discontinuities stimulated a program user to call the program developer,

who decided to eliminate the offending z/R texrms from the BOSOR4 computer

program permanently.
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Table |1

State-of-the-Art for Computer Programs for the Stress, Buckling,
and Vibration Analysis of Complex Axisymmetric Shells

Type of analysis

Shell geometry

Wall construction Loading

Nonlinear axisym-
metric stress

Linear symmetric or
nonsymmetric stress

Stability with linear

Multiple-segment

shells, each segment
with its own wall con- Skew-stiffened shells
struction, geometry,

and loading

symmetric or nonsym- Cylinder, cone,

metric prestress or
with nonlinear sym-
metric prestress

Vibration with non-
linear prestress
analysis

Variable mesh point
spacing within each

spherical, ogival,
toroidal, ellipsoidal
etc.

General meridional
shape; point-by-
point input

Axial and radial dis-
continuities in shell

, without skin

Axisymmetric or non-
symmetric thermal and/
or mechanical line loads

Monocoque, variable
or constant thickness

Fiber-wound shells and moments
Layered orthotropic Axisymmetric or non-
shells symmetric thermal and/

or mechanical dis-
tributed loads
Proportional loading
Non-proportional
loading

Corrugated, with or

Layered orthotropic
with temperature-
dependent material
properties

Any of above wall
types reinforced by

segment meridian stringers and/or
Arbitrary choice of rings treated as
reference surface “smeared out”
General edge Any of above wall
conditions types“further rein-
Branched shells forced by rings treated
Prismatic shells and as discrete
composite built-up  Wall properties vari-
pancls able along meridian
2 From Bushnell [ 18]
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Table 2

Physical Explanations of Terms in Local Stiffness
and Load-Geometric Matrices Eqgs. ( 175) and ( .176)

increment Ap(m).

Derived
Term From
Number  Equation
Number Physical Explanation of the Term
(:) 136 Stiffness matrix for shell as deformed by the 'fixed' load
£ . .
- p(m§Smeared stiffeners included here.)
E e : :
Mo (:) 136 Modification of shell stiffness due to 'fixed' membrane
E{" prestress in shell wall
‘ (:) 170 Pressure-rotation (live lead) effect from 'fixed' load
®
e £
H P (m)
I
= (:) 157 Contribution to stiffness of discrete ring as deformed
U}
3 by 'fixed' load.
e
hat (:) 157 Modification of discrete ring stiffness due to pre-
4
@ buckling hoop force from 'fixed' load
s
§ (:) 173 Line load-rotation (live load) effect from 'fixed'
f
load p (m) °
M (:) 136 Work done by prebuckling shell wall stress resultant
Icl increments due to load increment Ap(m) during buckling
S modal shell wall rotations.
M'N
Lol 171 Pressure rotation (live load) effect from load in-
crement A .
ment Ap
6] . . .
- (:) 157 Work done by prebuckling discrete ring hoop force in-
y crement due to load increment Ap during bucklin
£ (m) J
g X modal ring rotations.
Y
oo . . .
8 g Q:) 173 Line load-rotation (live load) effect from load
-
=]
I
[0}
0
=
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Table 3

Physical Explanations of Terms in Local Force

Vector and Where They Came From

Texm Derived
Number From
Equations Physical Explanation of Term

C)

® ® O

- 89), ( 134)
99), (. 113),
201)

95), ( 148),
152), ( 155)
98), ( 1s52),
155), (. 201)

Thermal Ioading on shell wall.

Surface tractions and pressure acting on
shell reference surface.

Thexmal loading on discrete ring.

Line loading along discrete ring
centroidal axis.
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Table 4

Comparison of Solutions and Computer Times for
Uniformly Pressurized (P = 3.0 psi) Flat Circular
Plate with 10 Elements (see Figure 43)

Type of model
8-Node, 2-Dimensional Thin shell theory:
isoparametric finite difference
finite elements energy method
Item (10 elements) (10 elements)

(1) Maximum displacement (in.)

(a) Linear elastic 1.9356 1.9491

(b) Nonlinear elastic 0.38357 0.38043

(c) Nonlinear elastic-plastic 0.58089 0.57221
(2) Number of unknowns 109 31
(3) Maximum matrix bandwidth 19 8
(4) Total Newton iterations req'd

for entire case 37 34
(5) Computer time spent in the

Newton-Loop (sec) 66.439 2.343
(6) Number of “trials™ (times that

material properties must be

updated) 10 10
(7) Computer time spent in updating

material properties (sec) 21.874 4.589
(8) Total run time (sec)
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Table

5

Change in Curvature of the Middle Surface

Theory za s
Byrne, Fliigge, Goldenveizer,
Lur’ye, Novozhilov, Love, 136a 8 34 136 6. 3B
Timoshenko, Reissner, A da  AB o8 B 98 AB da
Naghdi, Berry, Sanders
. 136 8334 1f10u v 94 w\|1la6g 62 9B 1(u oB 1& w
Viasov 49 AB 3 'rR.,(A 2o 4B 2 Ra) Bos 4B oa Re\ABoa Bop ' R
1 af1dw 1 04 ow 16f1dw 1 9Bow
Donnell, Mushtari —_——y e e — A=) ——
Jonnell, Mush A;(A o-) AB' 38 38 B a‘ﬁ(B ap) A'B 3a 9a

- » Terms given for the Viasov theory correspend only to the linear (n =1) terms of table

Change in Twist

Table 6

KGB

7

of the Middle Surface

Byrne, Fligge, Lur’ye, Goldenveiser,
Novoshilov, Timoshenko, Love

Aafe) Bofe) 1(1ou v oB) 1(1 uod
Ba\ A Ad\BJ R.A\Bod8 AB 6a) Rsg\A da AB 38

. : A afe.\ Boafo
Reissner, Berry, Naghdi B3 B( A + T aa< B)
Viasoy 1 _1\4afu) Bafo)| Baflow) Aaf1dw

asov Ra Ra)| B3B\A) 4 3a\B/ | 4 9a\B? 98) B 38\ 4* 6

A dfba B ofog 1t {1 1\féBv 9JAu
Banders B aﬂ(A ta 6a(8)+2AB(Rp Ra)( % oa )
Mushtari-D 11 _E.‘.’_ _I_G_w. _._A_i _1_6_19
ar-onne A 3a\B? 8] B 98\ A? da

» Terms given for the Vlasov theory correspond only to the linear (n =1) terms of table
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Table

8

Force Resultants According to the Various Theories a

Theory (1—»")Na/EM (1—~»*)Np/Eh 2(1+»)Nas/Eh 2(1-+»)Npa/Eh
Byrne, Fligse, Lurye L. (L S .. 4 W .6 | M1
: “TTE\R., | *T™T12\R, | “*"12\R. . “f 12\ R,
LY, e LAY, _L 7 s _LY(7 e
RgJ\" R. R.J\'? Rs Rg/\2 R. R.J\2 Ry
. . h3 h?
Goldenveizer, Novozhilov catveg g+ vea €+ El—a-‘;r e,,p+12 R:
Love, Timoshenko, Reissner,
Berry, Naghdi, Mushtari, €atvey eg+veq €af €ap
" Donnell, Sanders
Viasov © | Same as Byme, Same as Byrne, w_ﬁ 1 1 hﬂ‘y 11
Fligge, Lur'ye Flisgge, Lur'ye 24\R, Rp 24\Rs R.
a =
Note: =1 KaB
Table 9

a
Moment Resultants According to the Various Theories

Theory 12(1 =) Mo/BA? 12(1 —»*) Ms/EN? 24(14»)Map/Eh? | 24(1 +v)Mpa/Eh?
Byrne, Fligge, Lur'ye 1 1 1 1 B _tap
xa+w<ﬁ— E—Ea € xﬂ+pxa— E;;_E; g T y T R,
Goldenveizer, Novozhilov,
Love, Timoshenko, .
Reissner, Naghdi, Berry, Ka+rg kgt ¥Ka T T
Mushtari, Donnell,
Sanders
Vlasov Same as Fligge, Same as Byrne, st o8
Byrne, Lur'ye Fligge, Lur’ye Rg Ry

a
Note: T

3]

apf
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Figure
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REFERENCE SURFACE

Figure .= 5 Curved Beam of Developed Length, L

REFERENCE SURFACE

Figure 6 Coordinates (s,z) and Displacements (u,w)
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Figure

7

Local Radius of Curvature R(s)
and Rotation B
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(a)

(u*,w*) = (horizontal, vertical)

(b)

(u,w) = (tangential, normal)

‘L o
/
W w*

Figure 9 (a) Loa&im on the Beam; (b) Displacement Notation

HINGE ON ROLLERS
AT s = L

Figure 10 Boundary Conditions
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9 Buckling
Curve
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Figure 14 Bifurcation buckling at p.,. from prebuckling
equilibrium state determined from nonlinear
equations
N0
Mo
Figure 15

Prestress resultants at an interior
point along the beam reference surface
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Figure 17 Shell element with displacements, rotations, forces
(from Bushnell [ 27]).
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19 Geometry for constraint conditions: a) shell refer-

ence surface discontinuity; b) support points

(from
Bushnell [ 27]).
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Clamped Edge B

P Segment #2
dl *+ %+
u*,v¥,w*, 8* at 0
! F‘I
R
2 u* / Idz
¥ u*, v*,w*, B atc
n s ///B W
, Ring Attachment Point
e, (Negative) ’
A \/5 Segment #|
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Two-segment shell meridian with discrete rings, discontinuity,

Figure 20(a)
and various quantities identified (from Bushnell [ 271).

210



(o]

—_— 13
11
|
1
)
1d !
1T
N
11
!
h2 ; /
11
I,
/ / 10
X/
/7
/
Y /
/ 9
e
. ’_A'
C ;? / 78
! U
/’i
1 J 6
vi ,I 7
/ /
, .
//h w'i
/s 1
/7
<ﬁ\\\ // 4
/
NP
‘v 7
W4
/f,/ 3
Y //"/
(\ \,‘ <
\ X7
v 2
A
v 1

Shell meridian with discretized model (from Bushnell [ 271).

Figure 20(b)

211




o—— Fictitious
X Point

- Shell Energy = Ey = Lqu[B]T[C][B]{qi}
[c]
[B]

lagl = Lwy_psuy, ViaWisUsgqsVigy oWyl

]

Constitutive Law

Kinematic Law

m

Segment
Finite

Difference
Eiement
)

Fictitious —o
Point

Figure 21  Nodal displacement degrees of freedom for variable
nodal point spacing.

212




Figure

% ERROR IN w

COMPUTER TIME IN SECONDS;

22

——= w, Normal Edge Displacement

p=cos 28
Edges Free

\ Computer Time
\ lt(o Compute

Finite Element Analysis
With Cubic u,v, w

---- Finite Difference (BOSOR4)

20 40 60 80
NUMBER OF MESH POINTS

213

(from Bushnell [

Computer times to form stiffness matrix K; and
rates of convergence of normal edge displacement
for free hemisphere with nonuniform pressure

p(s,8) = Py cos 26

18]1).
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S 7 -
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!

PRESSURE
Y

VOLUME DISPLACED

Figure . 23 Load-deflection curves for shallow spherical cap,
showing bifurcation points from linear prebuckling

curve (pq1) and nonlinear prebuckling curve (pnb)
(from Bushnell [ 18]).
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CRITICAL LOAD ESTIMATE,p () |
pcr f

70 AN MINIMUM  FROM
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60 - 2%
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FINAL LOAD 9
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0
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Figure 25
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Strategy for calculation of critical buckling load Pp



'
. plb = pég)(n.]]p |
| | A
Pnt ; 7 \
7 Prebuckling

\-\» Postbuckling

PRESSURE

VOLUME DISPLACED

Figure 26 Situation in which the strategy corresponding to Equations
( 178) - ( 188) fails because the axisymmetric collagie

load p,; islower than the critical load estimate p(

or n=11).
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>
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VOLUME DISPLACED
Figure 27 Situation in which the strategy corgespondlng to Equations

( 178) - ( 188) fails because Xf" in Eq. ( 184) is
not the smallest eigenvalue in absolute value.
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CIRCUMFERENTIAL WAVE NUMBER,n
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Figure 28 (a) Stability determinant at n = ngp as function of load

L, (b),(c) eigenvalues as function of number of circum-
ferential waves, n.
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Figure 29 Buckling of axially compressed cylinder (from Bushnell

[ 18]).
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Figure 30 Sequence of axial load and circumferential wave number
estimates during calculation of buckling of cylinder
with nonlinear prebuckling effects included (from
Bushnell [ 181).
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Figure 31 Eigenvalue 'separation' for axially

compressed cylinder
(from Bushnell [ 18]).
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Figure 33 Ring-stiffened conical shell with simultaneous local
and general instability modes (from Bushmnell [ 34]).

224



u ui+1
1 |
@ Vi i’i#'}'l
W%+1
Xj41
u,
1 -
LTI,
Vis Y1 v Vit
@ 14 2
L 5
v:/i 1l+1
X | Xi41
. o _J
yal \W
YT Y41
i Vi+1
® 4 #“’Hl
vi Viel
¥i Lk i+l
X . Xi+1
s
e
T
NRRR
> NN
® RN+
N
4 g

D N\N\\

Wlm i/j4
. e
< ¢ <: .
<
Nu,
§ I\ Ny
oo SN
M 777400
A
h VA .

Figure 34
[

Various discrete models for energy me
191).

¥ie1 2
J w = .+ a8+ .8

T
€
!

Standard lowest order finite element

u*CYl"}‘Q’zS

v-a3+oz4s

2
W 015 + Q/es + &75 + ozss

3

Energy evaluated at Gaussian integration points.

Finite element with extra internal d.o.f{.

2 3
u al + 0125 + ass + a4s

’ 2
ap + s + s 4 oS

2
W= g + @8 + @8 + a8

3

v
3

Energy evaluated at Gaussian integration points.
Static reduction used to get local [K].

Finite element with extra nodal d.o.f.

2 3
u = o)+ 08+ a8 + oS

2 3
v=05+asfa7s +ass

2
w-a9+alo 5" + o

3

s+ « s

11 12

Energy evaluated at Gaussian integration pointa.

Finite difference with (ui,vi) on half-stations
u = a + s
f v o= agt a8

) 6 7
Energy evaluated at s = £/2.

Finite difference with (wi) on half-stations

u =« + afs

: 1 2
4 v = ot as \
i+l _
015 + Q/ss + a7s

Energy evaluated at s = £/2.
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Figure 2.35 Displacement functions for finite element model (:)
(from Bushnell [2.19]).

Figure 36 Displacement functions for finite difference model (:)
(from Bushnell [ 191]).
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Figure

37

Structural equivalent of finite difference model C) or
C) ‘(courtesy Carlos Felippa) (from Bushnell [ 19]).
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FINITE ELEMENT METHOD
STIFENESS MATRIX CALCULATION
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/
J=J o+ I

Interpolate geometry
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1/R2, C(6 x 6), thermal
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Calculate D(3 x 8) for
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Form k% = 87cB

Calculate local r1ght-
hand-side vector, FK(8)

Is

J 2 number of

Gaussian integration
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Assemble Kk into global
stiffness matrix Ky and
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elements
?

lVSTIFFNESS MATRIX FINISHED l

Figure 38

FINITE ELEMENT METHOD
STIFFNESS MATRIX CALCULATION
WITH STATIC REDUCTION

Y

Initialize K§(8 x 8),
W12, 12

Jed 4 I

Interpolate physical
parameters as before

Calculate D(3 x 12)
for d = Dq

y

Calculate B(6 x 12)
for € = Bq

Form W = 87ca

y

Calculate Tocal right-
hand-side vector, wk{12)

J 2> number of

Gaussian integration

points
?

NO

Perform static reduction
to obtaip local stiffness
matrix KE(B x B) and rhs
vector, F

Y

Assemble K into global
stiffness matrix K and
Fk into r

Is

I > number o
elements
?

[ STIFFNESS MATRIX FINISHEdA]

Flow charts for the calcula(i;

with finite-element models

difference models

[ 191).
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FINITE DIFFERENCE METHODS AND C)

STIFFNESS MATRIX CALCULATION

I=14+1

Initialize K7 x 7)

Calculate B(6 x 7) for
€ = Bq

Form K¥ = glce

Y

Calculate local right-
hand-side vector, Fk(7)

[

Assemb e Kf into global
stiffness matrix Ky and
rk into T

NO

mesh points
?

[ STITTNESS MATRIX FINISHEDA]

(E;ffness matrix Kl

and finite~

(adapted from Bushnell
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EQUIVALENT LAYERED ORTHOTROPIC SHELL WALL

Shell Orthotropic Material Properties

Wall Thick- £ £ »
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2 t G E v m a a
3 L] 0 0 E‘nt]/d2 0 mrj;]/d2 0 a,,
4 t2 0 0 ErLz/d2 0 mrLZ/dZ 0 a,

Figure = 39 How to model a shell wall with smeared stringers and rings.
Stiffeners and parts of stiffeners are treated as if they
were orthotropic layers or lamina (from Bushnell [ 34]).

229




y T T
_— 'ﬂ%

}'IT !1 L 45N
t——- Layer Number

Figure 40 Geometry of an N-Layered Laminate
(adapted from Jones [ 6]).
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THIN SHELLS

. TWO-DIMENSIONAL
e REGION :

41  Hybrid body of revolution: discretization in one and two
dimensions (from Bushnell [ 35]).
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Figure 43 Flat plate under uniform pressure modeled with 10
isoparametric 8-node finite elements (from Bushnell

[ 35D.

233




|
3
|

r
REFERENCE
SURFACE
I
(a)
x
AXIS OF REVOLUTION
q
Uervy
—
u1 w
r 0 2
“s
u
) Us
y

(b)

Figure .44 Variables used in the analysis of (a) thin shell segments,
(b) solids of revolution (from Bushnell [ 35}).
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Shell

Shell Reference
Surface

Discrete Ring
Attachment Point

| DISCRETE RING
/ (3 Segments)

NOTE: Discrete ring attachment point is considered to be
located on the shell reference surface.

Discrete ring as modeled in the hybrid program (from

Figure 45
Bushnell [ 251).
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Figure 46 Isoparametric 8-node solid element of revolution used in
hybrid computer program (from Bushnell [ .35]).
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Figure

Local accelerations 81 s 83 due to rigid body trans-
lational (ay, a,, ayp) ang angular (&g, by, ©,) accel-
erations and angular velocity wy, of and about the center
of mass.

237




Figure

48

Surface tractions on isoparametric quadrilateral finite
element of revolution. p¢, Pos Pp form a right-handed
system.
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/f , This Normal Remains
’ , Straight and Normal
/4— Reference Surface //' To The Reference
of Thin Shell /- Surface
Segment //'

Figure 49 Junction between thin shell segment and two-dimensional
finite element region (from Bushmell [ 35}).
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Figure 50 Middle surface coordinates (from Leissa [ 56]).

Figure

a + CONSTANT
(B CURVE)

(2} (z}
dAB ds‘9

51 Notation and positive directions of stress in shell
coordinates (from Leissa [ 561).
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Figure

Figure

52

53

Notation and positive directions of force resultants
in shell coordinates.

Notation and positive directions of moment resultants
in shell coordinates.
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MERIDIONAL STRESS

INNER FIBER

OUTER FIBER

=== = 2/R included

Figure

= = 2/R neglected 'r
o -~
\
/'\../
Seg. Seq. Seg. Seq.
@ @ @ @ Segment @
AN
- '\
4 A 2 4
2 3 4 5 6

MERIDIONAL ARC LENGTH ~ s

55 Inner and outer fiber stresses along meridian of wheel
rim predicted from theories including and neglecting
z/R compared to unity [see Eq. ( 339)].
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